Principal Component Analysis (PCA) untuk Mengatasi Multikolinieritas terhadap Faktor Angka Kejadian Pneumonia Balita di Jawa Timur Tahun 2014

Fita Mega Kusuma, Arief Wibowo
{"title":"Principal Component Analysis (PCA) untuk Mengatasi Multikolinieritas terhadap Faktor Angka Kejadian Pneumonia Balita di Jawa Timur Tahun 2014","authors":"Fita Mega Kusuma, Arief Wibowo","doi":"10.20473/JBK.V6I2.2017.89-97","DOIUrl":null,"url":null,"abstract":"Correlation between independent variables in multiple linear regression model called multicollinearity. One of the assumptions of multiple linear regression free from multicollinearity problem. Principal Component Analysis (PCA) method in this study aims to overcome the existence of multicollinearity in multiple linear regression and know the dominant factor to the research. PCA method has the advantage of clearing the correlation without losing the original variable. Case study a risk factor that affects the incidence of pneumonia infants in East Java 2014. This non reactive research because uses publication data of health profil of East Java. Result of this research multicollinearity problem in research data when detected by VIF/tolerance method. Variable of vitamin A coverage, measles immunization coverage and health service coverage are the variables that observed multicollinearity. A multicollinearity solution produces (F1) or new variable(coverage of vitamin A, immunization measles and health service), reduction of three variables that multicollinearity to not multicollinearity with VIF value of 1.608 < 10. Results of this study also proves the weakness of PCA method in analyzing the significance. PCA method shows the most influencing factors on the incidence of pneumonia of children under five year. Dominant factor in this research coverage of infant health services covering, coverage of vitamin A and coverage of measles immunization. Coverage factor of health services has a coefficient matrix value of 0.890 or 89% more influential than other factor.","PeriodicalId":33106,"journal":{"name":"Jurnal Biometrika dan Kependudukan","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Biometrika dan Kependudukan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/JBK.V6I2.2017.89-97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Correlation between independent variables in multiple linear regression model called multicollinearity. One of the assumptions of multiple linear regression free from multicollinearity problem. Principal Component Analysis (PCA) method in this study aims to overcome the existence of multicollinearity in multiple linear regression and know the dominant factor to the research. PCA method has the advantage of clearing the correlation without losing the original variable. Case study a risk factor that affects the incidence of pneumonia infants in East Java 2014. This non reactive research because uses publication data of health profil of East Java. Result of this research multicollinearity problem in research data when detected by VIF/tolerance method. Variable of vitamin A coverage, measles immunization coverage and health service coverage are the variables that observed multicollinearity. A multicollinearity solution produces (F1) or new variable(coverage of vitamin A, immunization measles and health service), reduction of three variables that multicollinearity to not multicollinearity with VIF value of 1.608 < 10. Results of this study also proves the weakness of PCA method in analyzing the significance. PCA method shows the most influencing factors on the incidence of pneumonia of children under five year. Dominant factor in this research coverage of infant health services covering, coverage of vitamin A and coverage of measles immunization. Coverage factor of health services has a coefficient matrix value of 0.890 or 89% more influential than other factor.
主成分分析(PCA)针对2014年东部巴里炎事件数量解决多发性结肠炎
多元线性回归模型中自变量之间的相关性称为多重共线性。多元线性回归不存在多重共线性问题的假设之一。本研究中的主成分分析(PCA)方法旨在克服多元线性回归中多重共线性的存在,了解研究的主导因素。PCA方法具有在不丢失原始变量的情况下清除相关性的优点。2014年影响东爪哇省婴儿肺炎发病率的风险因素案例研究。这项非反应性研究是因为使用了东爪哇健康档案的发布数据。研究结果表明,采用VIF/容限法检测研究数据时存在多重共线性问题。维生素A覆盖率、麻疹免疫接种率和卫生服务覆盖率是观察到多重共线性的变量。多重共线性解决方案产生(F1)或新的变量(维生素A的覆盖率、麻疹免疫和卫生服务),将多重共线性的三个变量减少为非多重共线性,VIF值为1.608<10。本研究的结果也证明了主成分分析方法在分析显著性方面的不足。PCA方法显示影响五岁以下儿童肺炎发病率的因素最多。本研究的主导因素包括婴儿保健服务覆盖率、维生素A覆盖率和麻疹免疫接种覆盖率。卫生服务覆盖率的系数矩阵值为0.890,比其他因素的影响大89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
12
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信