Canal: A Flexible Interconnect Generator for Coarse-Grained Reconfigurable Arrays

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jackson Melchert;Keyi Zhang;Yuchen Mei;Mark Horowitz;Christopher Torng;Priyanka Raina
{"title":"Canal: A Flexible Interconnect Generator for Coarse-Grained Reconfigurable Arrays","authors":"Jackson Melchert;Keyi Zhang;Yuchen Mei;Mark Horowitz;Christopher Torng;Priyanka Raina","doi":"10.1109/LCA.2023.3268126","DOIUrl":null,"url":null,"abstract":"The architecture of a coarse-grained reconfigurable array (CGRA) interconnect has a significant effect on not only the flexibility of the resulting accelerator, but also its power, performance, and area. Design decisions that have complex trade-offs need to be explored to maintain efficiency and performance across a variety of evolving applications. This paper presents Canal, a Python-embedded domain-specific language (eDSL) and compiler for specifying and generating reconfigurable interconnects for CGRAs. Canal uses a graph-based intermediate representation (IR) that allows for easy hardware generation and tight integration with place and route tools. We evaluate Canal by constructing both a fully static interconnect and a hybrid interconnect with ready-valid signaling, and by conducting design space exploration of the interconnect architecture by modifying the switch box topology, the number of routing tracks, and the interconnect tile connections. Through the use of a graph-based IR for CGRA interconnects, the eDSL, and the interconnect generation system, Canal enables fast design space exploration and creation of CGRA interconnects.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10105430/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

The architecture of a coarse-grained reconfigurable array (CGRA) interconnect has a significant effect on not only the flexibility of the resulting accelerator, but also its power, performance, and area. Design decisions that have complex trade-offs need to be explored to maintain efficiency and performance across a variety of evolving applications. This paper presents Canal, a Python-embedded domain-specific language (eDSL) and compiler for specifying and generating reconfigurable interconnects for CGRAs. Canal uses a graph-based intermediate representation (IR) that allows for easy hardware generation and tight integration with place and route tools. We evaluate Canal by constructing both a fully static interconnect and a hybrid interconnect with ready-valid signaling, and by conducting design space exploration of the interconnect architecture by modifying the switch box topology, the number of routing tracks, and the interconnect tile connections. Through the use of a graph-based IR for CGRA interconnects, the eDSL, and the interconnect generation system, Canal enables fast design space exploration and creation of CGRA interconnects.
Canal:用于粗粒度可重构阵列的柔性互连生成器
粗粒度可重构阵列(CGRA)互连的体系结构不仅对所得到的加速器的灵活性有重要影响,而且对其功率、性能和面积也有重要影响。需要探索具有复杂权衡的设计决策,以便在各种不断发展的应用程序中保持效率和性能。本文介绍了一种python嵌入式领域特定语言(eDSL)和编译器,用于为CGRAs指定和生成可重构互连。Canal使用一种基于图形的中间表示(IR),它允许简单的硬件生成和与位置和路由工具的紧密集成。我们通过构建一个完全静态的互连和一个具有现成有效信号的混合互连来评估Canal,并通过修改开关箱拓扑、路由轨道数量和互连瓦片连接来进行互连架构的设计空间探索。通过对CGRA互连、eDSL和互连生成系统使用基于图形的IR, Canal实现了CGRA互连的快速设计空间探索和创建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信