Yuanhao Liu, Yiwen Shen, Wei Ding, Xiangkun Zhang, Weiliang Tian, Song Yang, Bin Hui, Kewei Zhang
{"title":"All-natural phyllosilicate-polysaccharide triboelectric sensor for machine learning-assisted human motion prediction","authors":"Yuanhao Liu, Yiwen Shen, Wei Ding, Xiangkun Zhang, Weiliang Tian, Song Yang, Bin Hui, Kewei Zhang","doi":"10.1038/s41528-023-00254-3","DOIUrl":null,"url":null,"abstract":"The rapid development of smart and carbon-neutral cities motivates the potential of natural materials for triboelectric electronics. However, the relatively deficient charge density makes it challenging to achieve high Maxwell’s displacement current. Here, we propose a methodology for improving the triboelectricity of marine polysaccharide by incorporating charged phyllosilicate nanosheets. As a proof-of-concept, a flexible, flame-retardant, and eco-friendly triboelectric sensor is developed based on all-natural composite paper from alginate fibers and vermiculite nanosheets. The interlaced fibers and nanosheets not only enable superior electrical output but also give rise to wear resistance and mechanical stability. The fabricated triboelectric sensor successfully monitors slight motion signals from various joints of human body. Moreover, an effective machine-learning model is developed for human motion identification and prediction with accuracy of 96.2% and 99.8%, respectively. This work offers a promising strategy for improving the triboelectricity of organo-substrates and enables implementation of self-powered and intelligent platform for emerging applications.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00254-3.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-023-00254-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5
Abstract
The rapid development of smart and carbon-neutral cities motivates the potential of natural materials for triboelectric electronics. However, the relatively deficient charge density makes it challenging to achieve high Maxwell’s displacement current. Here, we propose a methodology for improving the triboelectricity of marine polysaccharide by incorporating charged phyllosilicate nanosheets. As a proof-of-concept, a flexible, flame-retardant, and eco-friendly triboelectric sensor is developed based on all-natural composite paper from alginate fibers and vermiculite nanosheets. The interlaced fibers and nanosheets not only enable superior electrical output but also give rise to wear resistance and mechanical stability. The fabricated triboelectric sensor successfully monitors slight motion signals from various joints of human body. Moreover, an effective machine-learning model is developed for human motion identification and prediction with accuracy of 96.2% and 99.8%, respectively. This work offers a promising strategy for improving the triboelectricity of organo-substrates and enables implementation of self-powered and intelligent platform for emerging applications.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.