Pseudo-algebraic Ricci solitons on Einstein nilradicals

IF 0.5 4区 数学 Q3 MATHEMATICS
Zaili Yan
{"title":"Pseudo-algebraic Ricci solitons on Einstein nilradicals","authors":"Zaili Yan","doi":"10.1515/advgeom-2020-0032","DOIUrl":null,"url":null,"abstract":"Abstract We develop a variational method to find pseudo-algebraic Ricci solitons on connected Lie groups.As applications, we prove that every Einstein nilradical admits a non-Riemannian algebraic Ricci soliton, and that any algebraic Ricci soliton on a semi-simple Lie group is Einstein. Furthermore, we construct several Lorentz algebraic Ricci solitons on the nilpotent Lie groups which have a codimension one abelian ideal.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2020-0032","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2020-0032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We develop a variational method to find pseudo-algebraic Ricci solitons on connected Lie groups.As applications, we prove that every Einstein nilradical admits a non-Riemannian algebraic Ricci soliton, and that any algebraic Ricci soliton on a semi-simple Lie group is Einstein. Furthermore, we construct several Lorentz algebraic Ricci solitons on the nilpotent Lie groups which have a codimension one abelian ideal.
Einstein幂自由基上的伪代数Ricci孤子
摘要我们发展了一种在连通李群上寻找伪代数Ricci孤子的变分方法。作为应用,我们证明了每一个Einstein幂零根都允许一个非黎曼代数Ricci孤子,并且证明了半单李群上的任何代数Ricci孤立子都是Einstein。此外,我们在具有余维一阿贝尔理想的幂零李群上构造了几个洛伦兹代数Ricci孤子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信