L. Sallum, L. Silva, J. E. Queiroz, Vitor Duarte, Wesley F. Vaz, M. Hernandes, G. Aquino, A. Camargo, H. Napolitano
{"title":"Structural basis for fluorine substitution on a new naphthalene–chalcone analog","authors":"L. Sallum, L. Silva, J. E. Queiroz, Vitor Duarte, Wesley F. Vaz, M. Hernandes, G. Aquino, A. Camargo, H. Napolitano","doi":"10.1515/zkri-2022-0066","DOIUrl":null,"url":null,"abstract":"Abstract Fluorinated chalcones are organic compounds with diverse biological activities and are of interest for drug development due to their improved properties, such as lipophilicity, bioavailability, and metabolic stability. Therefore, the correlation between structure and properties is fundamental to discover the potential use on pharmaceutical and technological applications. In this sense, we synthesized and characterized a novel fluorinated chalcone (E)-1-(4-fluorophenyl)-3-(naphthalen-1-yl)prop-2-en-1-one (FCH), and compared its supramolecular arrangement and topological analysis with a chalcone (E)-1-(4-hydroxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-one (HCH). The molecular electrostatic potential, QTAIM, and frontier molecular orbitals of both chalcones were investigated using the M06-2X/6-311++G(d,p) level of theory. Our findings show that the FCH exhibits a herringbone packing with intermolecular interactions of C–H⋯F and C–H⋯π, while the HCH assumes a staircase packing coordinated by O–H⋯O and π⋯π intermolecular interactions. Furthermore, the electrostatic potential analysis shows that FCH is susceptible to electrophilic attack, while HCH is susceptible to nucleophilic attack. Finally, the structural basis analysis for both chalcones indicated that FCH has a higher lipophilicity than HCH due to the stronger hydrogen bond of HCH with water.","PeriodicalId":48676,"journal":{"name":"Zeitschrift Fur Kristallographie-Crystalline Materials","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Kristallographie-Crystalline Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/zkri-2022-0066","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Fluorinated chalcones are organic compounds with diverse biological activities and are of interest for drug development due to their improved properties, such as lipophilicity, bioavailability, and metabolic stability. Therefore, the correlation between structure and properties is fundamental to discover the potential use on pharmaceutical and technological applications. In this sense, we synthesized and characterized a novel fluorinated chalcone (E)-1-(4-fluorophenyl)-3-(naphthalen-1-yl)prop-2-en-1-one (FCH), and compared its supramolecular arrangement and topological analysis with a chalcone (E)-1-(4-hydroxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-one (HCH). The molecular electrostatic potential, QTAIM, and frontier molecular orbitals of both chalcones were investigated using the M06-2X/6-311++G(d,p) level of theory. Our findings show that the FCH exhibits a herringbone packing with intermolecular interactions of C–H⋯F and C–H⋯π, while the HCH assumes a staircase packing coordinated by O–H⋯O and π⋯π intermolecular interactions. Furthermore, the electrostatic potential analysis shows that FCH is susceptible to electrophilic attack, while HCH is susceptible to nucleophilic attack. Finally, the structural basis analysis for both chalcones indicated that FCH has a higher lipophilicity than HCH due to the stronger hydrogen bond of HCH with water.
期刊介绍:
Zeitschrift für Kristallographie – Crystalline Materials was founded in 1877 by Paul von Groth and is today one of the world’s oldest scientific journals. It offers a place for researchers to present results of their theoretical experimental crystallographic studies. The journal presents significant results on structures and on properties of organic/inorganic substances with crystalline character, periodically ordered, modulated or quasicrystalline on static and dynamic phenomena applying the various methods of diffraction, spectroscopy and microscopy.