Real-world sentence boundary detection using multitask learning: A case study on French

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kyungtae Lim, Jungyeul Park
{"title":"Real-world sentence boundary detection using multitask learning: A case study on French","authors":"Kyungtae Lim, Jungyeul Park","doi":"10.1017/s1351324922000134","DOIUrl":null,"url":null,"abstract":"\n We propose a novel approach for sentence boundary detection in text datasets in which boundaries are not evident (e.g., sentence fragments). Although detecting sentence boundaries without punctuation marks has rarely been explored in written text, current real-world textual data suffer from widespread lack of proper start/stop signaling. Herein, we annotate a dataset with linguistic information, such as parts of speech and named entity labels, to boost the sentence boundary detection task. Via experiments, we obtained F1 scores up to 98.07% using the proposed multitask neural model, including a score of 89.41% for sentences completely lacking punctuation marks. We also present an ablation study and provide a detailed analysis to demonstrate the effectiveness of the proposed multitask learning method.","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1351324922000134","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a novel approach for sentence boundary detection in text datasets in which boundaries are not evident (e.g., sentence fragments). Although detecting sentence boundaries without punctuation marks has rarely been explored in written text, current real-world textual data suffer from widespread lack of proper start/stop signaling. Herein, we annotate a dataset with linguistic information, such as parts of speech and named entity labels, to boost the sentence boundary detection task. Via experiments, we obtained F1 scores up to 98.07% using the proposed multitask neural model, including a score of 89.41% for sentences completely lacking punctuation marks. We also present an ablation study and provide a detailed analysis to demonstrate the effectiveness of the proposed multitask learning method.
基于多任务学习的真实世界句子边界检测——以法语为例
我们提出了一种在边界不明显的文本数据集中(例如,句子片段)进行句子边界检测的新方法。尽管在书面文本中很少探索检测没有标点符号的句子边界,但当前现实世界的文本数据普遍缺乏正确的开始/停止信号。在此,我们用语言信息(如词性和命名实体标签)对数据集进行注释,以增强句子边界检测任务。通过实验,我们使用所提出的多任务神经模型获得了高达98.07%的F1分数,其中完全没有标点符号的句子的分数为89.41%。我们还介绍了一项消融研究,并提供了详细的分析,以证明所提出的多任务学习方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Language Engineering
Natural Language Engineering COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
12.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Natural Language Engineering meets the needs of professionals and researchers working in all areas of computerised language processing, whether from the perspective of theoretical or descriptive linguistics, lexicology, computer science or engineering. Its aim is to bridge the gap between traditional computational linguistics research and the implementation of practical applications with potential real-world use. As well as publishing research articles on a broad range of topics - from text analysis, machine translation, information retrieval and speech analysis and generation to integrated systems and multi modal interfaces - it also publishes special issues on specific areas and technologies within these topics, an industry watch column and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信