{"title":"SKEM++: SEMANTIC KEYWORD EXTRACTION MODEL USING COLLECTIVE CENTRALITY MEASURE ON BIG SOCIAL DATA","authors":"D. R, S. V.","doi":"10.22452/mjcs.sp2022no1.1","DOIUrl":null,"url":null,"abstract":"In recent times, Online Social Network (OSN) has accumulated a massive volume of user-generated data available in an unstructured format. It consists of user ideas, responses, and opinions on various topics. It extracts essential keywords in OSN, which is endowed with many exciting applications such as information recommendation or viral marketing. This paper emphasizes the importance of semantic graph-based methods for extracting vital keywords experimentally using a novel SKEM++ method. It is an innovative method for keyword extraction from OSN based on centrality measures. It utilizes a distributed computing approach to calculate the network Collective Centrality Measure (CCM) for each node and improve the semantics of keywords. The distributed approach is more scalable and computationally efficient than the conventional system, making it more suitable for large-scale real-time data sets such as the OSN. Experimental outcomes on the real-time Twitter Data set to infer the dominance of the proposed Collective Centrality Measure(CCM) method in evaluation with contemporary schemes in terms of F-score by 81% and recall by 80% and precision by 80% using Semantic Analysis.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.sp2022no1.1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent times, Online Social Network (OSN) has accumulated a massive volume of user-generated data available in an unstructured format. It consists of user ideas, responses, and opinions on various topics. It extracts essential keywords in OSN, which is endowed with many exciting applications such as information recommendation or viral marketing. This paper emphasizes the importance of semantic graph-based methods for extracting vital keywords experimentally using a novel SKEM++ method. It is an innovative method for keyword extraction from OSN based on centrality measures. It utilizes a distributed computing approach to calculate the network Collective Centrality Measure (CCM) for each node and improve the semantics of keywords. The distributed approach is more scalable and computationally efficient than the conventional system, making it more suitable for large-scale real-time data sets such as the OSN. Experimental outcomes on the real-time Twitter Data set to infer the dominance of the proposed Collective Centrality Measure(CCM) method in evaluation with contemporary schemes in terms of F-score by 81% and recall by 80% and precision by 80% using Semantic Analysis.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus