{"title":"Crassula genus plants response to temperature stress depends on anatomical structure and antioxidant system","authors":"N. Nuzhyna, M. Gaidarzhy, A. Holubenko","doi":"10.15407/ubj92.04.111","DOIUrl":null,"url":null,"abstract":"Plant adaptation to climate conditions of certain territories has emerged within the course of evolution, shows at all organizational levels from morphological-anatomical to biochemical and is embedded into the plant genes. Survival of plants in such conditions as rapid temperature drops and rises in the range of 20 °C or more depends on their biochemical defense system's ability to quickly respond to such stress, as well as on the plant's structural features. Therefore, our goal was to analyze changes of biochemical parameters under conditions of abrupt hyperthermia in four species of Crassula linne genus and to establish the connection between their anatomical and morphological features and the peculiarities of the biochemical reactions. Plants of Crassula brevifolia Harvey, Crassula lanuliginosa Harvey, Crassula muscosa Linne and Сrassula perfoliata var. minor (haworth) G.d. rowley species were held in air thermostats at 40 °C and 50 °C for 3 h, the control temperature being 26 °C. Stress response was analyzed by malondialdehyde content, superoxide dismutase and peroxidase activity and pigments content. additionally, anatomical structure of the leaves was investigated. Antioxidant response to short-term high temperature varied in different species of the Crassula genus by its directionality and intensity, and depended on the anatomical features of the plant. The additional protective mechanisms were involved in the least heat-resistant plants, such as increased carotenoids and flavonoids contents. More powerful SOD and peroxidase activities under rapid heating in plants with more effective protection at the anatomical level were showed.","PeriodicalId":23448,"journal":{"name":"Ukrainian Biochemical Journal","volume":"92 1","pages":"111-123"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Biochemical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ubj92.04.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Plant adaptation to climate conditions of certain territories has emerged within the course of evolution, shows at all organizational levels from morphological-anatomical to biochemical and is embedded into the plant genes. Survival of plants in such conditions as rapid temperature drops and rises in the range of 20 °C or more depends on their biochemical defense system's ability to quickly respond to such stress, as well as on the plant's structural features. Therefore, our goal was to analyze changes of biochemical parameters under conditions of abrupt hyperthermia in four species of Crassula linne genus and to establish the connection between their anatomical and morphological features and the peculiarities of the biochemical reactions. Plants of Crassula brevifolia Harvey, Crassula lanuliginosa Harvey, Crassula muscosa Linne and Сrassula perfoliata var. minor (haworth) G.d. rowley species were held in air thermostats at 40 °C and 50 °C for 3 h, the control temperature being 26 °C. Stress response was analyzed by malondialdehyde content, superoxide dismutase and peroxidase activity and pigments content. additionally, anatomical structure of the leaves was investigated. Antioxidant response to short-term high temperature varied in different species of the Crassula genus by its directionality and intensity, and depended on the anatomical features of the plant. The additional protective mechanisms were involved in the least heat-resistant plants, such as increased carotenoids and flavonoids contents. More powerful SOD and peroxidase activities under rapid heating in plants with more effective protection at the anatomical level were showed.
期刊介绍:
The Ukrainian Biochemical Journal publishes original research papers, reviews and brief notes; papers on research methods and techniques; articles on the history of biochemistry, its development and prominent figures; discussion articles; book reviews; chronicles; etc. The journal scope includes not only biochemistry but also related sciences, such as cellular and molecular biology, bioorganic chemistry, biophysics, pharmacology, genetics, and medicine (medical biochemistry et al.) – insofar as the studies use biochemical methods and discuss biochemical findings.