{"title":"COMPUTATIONAL SIMULATION OF THE INTERACTION AMONG AUTOREGULATION MECHANISMS REGULATING CEREBRAL BLOOD FLOW RATE IN SYSTOLIC HEART FAILURE","authors":"Surhan Bozkurt, U. E. Ayten","doi":"10.1142/s0218339023500043","DOIUrl":null,"url":null,"abstract":"In this study, a lumped parameter model which includes systemic circulation, cerebral blood vessels, systemic arteriolar resistance control, heart rate control, cerebral autoregulation mechanisms and cerebral CO2 reactivity was developed to simulate healthy and heart failure conditions. In the healthy cardiovascular system model, the results were obtained with all control mechanisms connected to the model. Whilst heart failure cases were simulated, all control mechanisms were removed from the model. Then, cerebral autoregulation and cerebral CO2 reactivity mechanisms were connected to the model. Lastly, systemic arteriolar resistance and heart rate control mechanisms were connected to the model. Also, Monte Carlo Analysis was performed to determine the range of parameters controlled for simulations of healthy and heart failure conditions. The results showed that blood flow rate in cerebral circulation can be simulated more accurately by modeling interaction among autoregulatory mechanisms rather than studying separately.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339023500043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a lumped parameter model which includes systemic circulation, cerebral blood vessels, systemic arteriolar resistance control, heart rate control, cerebral autoregulation mechanisms and cerebral CO2 reactivity was developed to simulate healthy and heart failure conditions. In the healthy cardiovascular system model, the results were obtained with all control mechanisms connected to the model. Whilst heart failure cases were simulated, all control mechanisms were removed from the model. Then, cerebral autoregulation and cerebral CO2 reactivity mechanisms were connected to the model. Lastly, systemic arteriolar resistance and heart rate control mechanisms were connected to the model. Also, Monte Carlo Analysis was performed to determine the range of parameters controlled for simulations of healthy and heart failure conditions. The results showed that blood flow rate in cerebral circulation can be simulated more accurately by modeling interaction among autoregulatory mechanisms rather than studying separately.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.