{"title":"Fitness landscapes for coupled map lattices","authors":"Noelle Driver, Michael Frame","doi":"10.1007/s10867-021-09577-6","DOIUrl":null,"url":null,"abstract":"<div><p>Our goal is to match some dynamical aspects of biological systems with that of networks of coupled logistic maps. With these networks we generate sequences of iterates, convert them to symbol sequences by coarse-graining, and count the number of times combinations of symbols occur. Comparison of this with the number of times these combinations occur in experimental data—a sequence of interbeat intervals for example—is a measure of the fitness of each network to describe the target data. The most fit networks provide a cartoon that suggests a decomposition of the experimental data into a component that may be produced by a simple dynamical subsystem, and a residual component, the result of detailed, particular characteristics of the system that generated the target data. In the space of all network parameters, each point corresponds to a particular network. We construct a fitness landscape when we assign a fitness to each point. Because the parameters are distributed continuously over their ranges, and because fitnesses are estimated numerically, any plot of the landscape involves a finite sample of parameter values. We’ll investigate how the local landscape geometry changes when the array of sample parameters is refined, and use the landscape geometry to explore complex relations between local fitness maxima.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-021-09577-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-021-09577-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Our goal is to match some dynamical aspects of biological systems with that of networks of coupled logistic maps. With these networks we generate sequences of iterates, convert them to symbol sequences by coarse-graining, and count the number of times combinations of symbols occur. Comparison of this with the number of times these combinations occur in experimental data—a sequence of interbeat intervals for example—is a measure of the fitness of each network to describe the target data. The most fit networks provide a cartoon that suggests a decomposition of the experimental data into a component that may be produced by a simple dynamical subsystem, and a residual component, the result of detailed, particular characteristics of the system that generated the target data. In the space of all network parameters, each point corresponds to a particular network. We construct a fitness landscape when we assign a fitness to each point. Because the parameters are distributed continuously over their ranges, and because fitnesses are estimated numerically, any plot of the landscape involves a finite sample of parameter values. We’ll investigate how the local landscape geometry changes when the array of sample parameters is refined, and use the landscape geometry to explore complex relations between local fitness maxima.
期刊介绍:
Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials.
The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.