Model Reports, a Supervision Tool for Machine Learning Engineers and Users

Pub Date : 2022-01-14 DOI:10.46300/9109.2022.16.5
Amine Saboni, M. R. Ouamane, O. Bennis, F. Kratz
{"title":"Model Reports, a Supervision Tool for Machine Learning Engineers and Users","authors":"Amine Saboni, M. R. Ouamane, O. Bennis, F. Kratz","doi":"10.46300/9109.2022.16.5","DOIUrl":null,"url":null,"abstract":"This article investigates a methodology to design an automated supervision report, ensuring the suitability between the designers and the users of an algorithm. For this purpose, we built a super-vision tool, focused on error diagnosis. The argumentation of the article relies first on the exposition of the reasons to use model reports as a supervision artefact, with a prototype of implementation at an organization level, describing the necessary tooling to industrialize its production. Finally, we propose a method for supervising machine learning algorithms in a responsible and sustainable way, starting from the conception of the algorithm, along its development and dur-ing its operating phase.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9109.2022.16.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article investigates a methodology to design an automated supervision report, ensuring the suitability between the designers and the users of an algorithm. For this purpose, we built a super-vision tool, focused on error diagnosis. The argumentation of the article relies first on the exposition of the reasons to use model reports as a supervision artefact, with a prototype of implementation at an organization level, describing the necessary tooling to industrialize its production. Finally, we propose a method for supervising machine learning algorithms in a responsible and sustainable way, starting from the conception of the algorithm, along its development and dur-ing its operating phase.
分享
查看原文
模型报告,机器学习工程师和用户的监督工具
本文研究了一种设计自动监督报告的方法,以确保设计人员和算法用户之间的适用性。为此,我们构建了一个专注于错误诊断的监督视觉工具。本文的论证首先依赖于对使用模型报告作为监督工件的原因的阐述,在组织级别上使用实现的原型,描述将其生产工业化所需的工具。最后,我们提出了一种以负责任和可持续的方式监督机器学习算法的方法,从算法的概念开始,沿着它的发展和运行阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信