{"title":"On Extensions of the Barone-Adesi & Whaley Method to Price American-Type Options","authors":"Ludovic Mathys","doi":"10.2139/ssrn.3482064","DOIUrl":null,"url":null,"abstract":"The present article provides an efficient and accurate hybrid method to price American standard options in certain jump-diffusion models as well as American barrier-type options under the Black & Scholes framework. Our method generalizes the quadratic approximation scheme of Barone-Adesi & Whaley (1987) and several of its extensions. Using perturbative arguments, we decompose the early exercise pricing problem into sub-problems of different orders and solve these sub-problems successively. The obtained solutions are combined to recover approximations to the original pricing problem of multiple orders, with the 0-th order version matching the general Barone-Adesi & Whaley ansatz. We test the accuracy and efficiency of the approximations via numerical simulations. The results show a clear dominance of higher order approximations over their respective 0-th order version and reveal that significantly more pricing accuracy can be obtained by relying on approximations of the first few orders. Additionally, they suggest that increasing the order of any approximation by one generally refines the pricing precision, however that this happens at the expense of greater computational costs.","PeriodicalId":51731,"journal":{"name":"Journal of Computational Finance","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.2139/ssrn.3482064","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 4
Abstract
The present article provides an efficient and accurate hybrid method to price American standard options in certain jump-diffusion models as well as American barrier-type options under the Black & Scholes framework. Our method generalizes the quadratic approximation scheme of Barone-Adesi & Whaley (1987) and several of its extensions. Using perturbative arguments, we decompose the early exercise pricing problem into sub-problems of different orders and solve these sub-problems successively. The obtained solutions are combined to recover approximations to the original pricing problem of multiple orders, with the 0-th order version matching the general Barone-Adesi & Whaley ansatz. We test the accuracy and efficiency of the approximations via numerical simulations. The results show a clear dominance of higher order approximations over their respective 0-th order version and reveal that significantly more pricing accuracy can be obtained by relying on approximations of the first few orders. Additionally, they suggest that increasing the order of any approximation by one generally refines the pricing precision, however that this happens at the expense of greater computational costs.
期刊介绍:
The Journal of Computational Finance is an international peer-reviewed journal dedicated to advancing knowledge in the area of financial mathematics. The journal is focused on the measurement, management and analysis of financial risk, and provides detailed insight into numerical and computational techniques in the pricing, hedging and risk management of financial instruments. The journal welcomes papers dealing with innovative computational techniques in the following areas: Numerical solutions of pricing equations: finite differences, finite elements, and spectral techniques in one and multiple dimensions. Simulation approaches in pricing and risk management: advances in Monte Carlo and quasi-Monte Carlo methodologies; new strategies for market factors simulation. Optimization techniques in hedging and risk management. Fundamental numerical analysis relevant to finance: effect of boundary treatments on accuracy; new discretization of time-series analysis. Developments in free-boundary problems in finance: alternative ways and numerical implications in American option pricing.