Yajie Huo, Yu Mao, F. Luo, Fengjiao Zhang, Lifang Xie, Xiaoke Zhang, Kai Liu, Ling Sun, Hongmei Liu, Lige Song, Huanhuan Wang, Zhiqiang Kang
{"title":"Exploring the Mechanism of Circ-vgll3 in Osteogenically Differentiated Human Bone Marrow Mesenchymal Stem Cells","authors":"Yajie Huo, Yu Mao, F. Luo, Fengjiao Zhang, Lifang Xie, Xiaoke Zhang, Kai Liu, Ling Sun, Hongmei Liu, Lige Song, Huanhuan Wang, Zhiqiang Kang","doi":"10.26689/jcnr.v7i4.5139","DOIUrl":null,"url":null,"abstract":"Objective: To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells. Methods: BMSCs cells were transfected with circRNA-vgll3, and divided into circRNA-vgll3 high-level group, circRNA-vgll3 low-level group, and negative control group (circRNA-vgll3 not transfected) according to the amount of transfection. The proliferation and apoptosis of BMSCs osteoblasts in each group were analyzed, and the alkaline phosphatase (ALP) activity, type I collagen gray value, bone morphogenetic protein 2 (BMP-2), Runx2 protein, and mRNA expression levels were detected. Results: The circRNA-vgll3 low-level group had a significant inhibitory effect on the proliferation of BMSCs osteoblasts, and the apoptosis rate of the circRNA-vgll3 low-level group was significantly higher than that of the circRNA-vgll3 high-level group ( P < 0.05 ); ALP activity, type I collagen gray value, BMP-2, Runx2 protein, and mRNA expression levels in the high-level circRNA-vgll3 group were significantly higher than those in the low-level circRNA-vgll3 group, and the difference was statistically significant (P < 0.05). Conclusion: Overexpression of circRNA-vgll3 can promote the osteogenic differentiation ability of BMSCs, while low expression of circRNA-vgll3 can inhibit the osteogenic differentiation ability of BMSCs. The main mechanism of action is that circRNA-vgll3 can affect osteogenic differentiation by regulating the Runx2 protein.","PeriodicalId":64151,"journal":{"name":"临床护理研究","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"临床护理研究","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26689/jcnr.v7i4.5139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells. Methods: BMSCs cells were transfected with circRNA-vgll3, and divided into circRNA-vgll3 high-level group, circRNA-vgll3 low-level group, and negative control group (circRNA-vgll3 not transfected) according to the amount of transfection. The proliferation and apoptosis of BMSCs osteoblasts in each group were analyzed, and the alkaline phosphatase (ALP) activity, type I collagen gray value, bone morphogenetic protein 2 (BMP-2), Runx2 protein, and mRNA expression levels were detected. Results: The circRNA-vgll3 low-level group had a significant inhibitory effect on the proliferation of BMSCs osteoblasts, and the apoptosis rate of the circRNA-vgll3 low-level group was significantly higher than that of the circRNA-vgll3 high-level group ( P < 0.05 ); ALP activity, type I collagen gray value, BMP-2, Runx2 protein, and mRNA expression levels in the high-level circRNA-vgll3 group were significantly higher than those in the low-level circRNA-vgll3 group, and the difference was statistically significant (P < 0.05). Conclusion: Overexpression of circRNA-vgll3 can promote the osteogenic differentiation ability of BMSCs, while low expression of circRNA-vgll3 can inhibit the osteogenic differentiation ability of BMSCs. The main mechanism of action is that circRNA-vgll3 can affect osteogenic differentiation by regulating the Runx2 protein.