An empirical characterization of ODE models of swarm behaviors in common foraging scenarios

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
John Harwell, Angel Sylvester, Maria Gini
{"title":"An empirical characterization of ODE models of swarm behaviors in common foraging scenarios","authors":"John Harwell,&nbsp;Angel Sylvester,&nbsp;Maria Gini","doi":"10.1007/s10514-023-10121-9","DOIUrl":null,"url":null,"abstract":"<div><p>There is a large class of real-world problems, such as warehouse transport, at different scales, swarm densities, etc., that can be characterized as Central Place Foraging Problems (CPFPs). We contribute to swarm engineering by designing an Ordinary Differential Equation (ODE) model that strives to capture the underlying behavioral dynamics of the CPFP in these application areas. Our simulation results show that a hybrid ODE modeling approach combining analytic parameter calculations and post-hoc (i.e., after running experiments) parameter fitting can be just as effective as a purely post-hoc approach to computing parameters via simulations, while requiring less tuning and iterative refinement. This makes it easier to design systems with provable bounds on behavior. Additionally, the resulting model parameters are more understandable because their values can be traced back to problem features, such as system size, robot control algorithm, etc. Finally, we perform real-robot experiments to further understand the limits of our model from an engineering standpoint.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 7","pages":"963 - 977"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10121-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

There is a large class of real-world problems, such as warehouse transport, at different scales, swarm densities, etc., that can be characterized as Central Place Foraging Problems (CPFPs). We contribute to swarm engineering by designing an Ordinary Differential Equation (ODE) model that strives to capture the underlying behavioral dynamics of the CPFP in these application areas. Our simulation results show that a hybrid ODE modeling approach combining analytic parameter calculations and post-hoc (i.e., after running experiments) parameter fitting can be just as effective as a purely post-hoc approach to computing parameters via simulations, while requiring less tuning and iterative refinement. This makes it easier to design systems with provable bounds on behavior. Additionally, the resulting model parameters are more understandable because their values can be traced back to problem features, such as system size, robot control algorithm, etc. Finally, we perform real-robot experiments to further understand the limits of our model from an engineering standpoint.

Abstract Image

常见觅食情景下群体行为的ODE模型的经验表征
在现实世界中,有大量的问题,如仓库运输,在不同的规模,群体密度等,可以被描述为中心地点觅食问题(CPFPs)。我们通过设计一个常微分方程(ODE)模型来为群体工程做出贡献,该模型努力捕捉CPFP在这些应用领域的潜在行为动态。我们的模拟结果表明,结合分析参数计算和事后(即运行实验后)参数拟合的混合ODE建模方法可以与通过模拟计算参数的纯粹事后方法一样有效,同时需要更少的调整和迭代改进。这使得设计具有可证明行为界限的系统变得更加容易。此外,得到的模型参数更容易理解,因为它们的值可以追溯到问题特征,如系统大小、机器人控制算法等。最后,我们进行了真实的机器人实验,从工程的角度进一步了解我们的模型的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信