Goveraiahgari Venkatesh, R. Meenakshi Reddy, Pabbisetty Mallikarjuna Rao
{"title":"Numerical investigations of heat transfer characteristics using oblong fins and circular fins in a wedge channel","authors":"Goveraiahgari Venkatesh, R. Meenakshi Reddy, Pabbisetty Mallikarjuna Rao","doi":"10.1515/tjj-2022-0055","DOIUrl":null,"url":null,"abstract":"Abstract Turbine inlet air temperatures are extremely high, which can result in blade material damage. As a result, cooling the turbine blades is required, and a variety of cooling techniques have been introduced. The majority of the previous research on pin fins has focused on circular fins using a wedge duct to apply a constant temperature and uniform heat flux to the end wall and pin fin surfaces. The present study compares seven oblong pin-fins to seven circular pin fins in a wedge duct with a Reynolds number range of 10,000–50,000 and a constant heat flux (surface) of 3280 W/m2 applied to the endwall and surfaces of the oblong pin fin. The results indicate that the friction factor for oblong fins is 14% lower than for circular pin fins. The thermal performance factor is increased by 11.4%. The thermal performance factor can be improved by using oblong pin fins with higher Reynolds numbers.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0055","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Turbine inlet air temperatures are extremely high, which can result in blade material damage. As a result, cooling the turbine blades is required, and a variety of cooling techniques have been introduced. The majority of the previous research on pin fins has focused on circular fins using a wedge duct to apply a constant temperature and uniform heat flux to the end wall and pin fin surfaces. The present study compares seven oblong pin-fins to seven circular pin fins in a wedge duct with a Reynolds number range of 10,000–50,000 and a constant heat flux (surface) of 3280 W/m2 applied to the endwall and surfaces of the oblong pin fin. The results indicate that the friction factor for oblong fins is 14% lower than for circular pin fins. The thermal performance factor is increased by 11.4%. The thermal performance factor can be improved by using oblong pin fins with higher Reynolds numbers.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.