{"title":"Mechanisms of shock-induced initiation at micro-scale defects in energetic crystal-binder systems","authors":"P. Das, H. S. Udaykumar","doi":"10.1007/s00193-022-01099-x","DOIUrl":null,"url":null,"abstract":"<div><p>Crystals of energetic materials, such as 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane (HMX), embedded in plastic binders are the building blocks of plastic-bonded explosives (PBX). Such heterogeneous energetic materials contain microstructural features such as sharp corners, interfaces between crystal and binder, intra- and extra-granular voids, and other defects. Energy localization or “hotspots” arise during shock interaction with the microstructural heterogeneities, leading to initiation of PBXs. In this paper, high-resolution numerical simulations are performed to elucidate the mechanistic details of shock-induced initiation in a PBX; we examine four different mechanisms: (1) shock-focusing at sharp corners or edges and its dependency on the shape of the crystal and the strength of the applied shock; (2) debonding between crystal and binder interfaces; (3) collapse of voids in the binder located near an HMX crystal; and (4) the collapse of voids within HMX crystals. Insights are obtained into the relative contributions of these mechanisms to the ignition and growth of hotspots. Understanding these mechanisms of energy localization and their relative importance for hotspot formation and initiation sensitivity of PBXs will aid in the design of energetic material-driven systems with controlled sensitivity, to prevent accidental initiation and ensure reliable performance.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-022-01099-x.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-022-01099-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3
Abstract
Crystals of energetic materials, such as 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane (HMX), embedded in plastic binders are the building blocks of plastic-bonded explosives (PBX). Such heterogeneous energetic materials contain microstructural features such as sharp corners, interfaces between crystal and binder, intra- and extra-granular voids, and other defects. Energy localization or “hotspots” arise during shock interaction with the microstructural heterogeneities, leading to initiation of PBXs. In this paper, high-resolution numerical simulations are performed to elucidate the mechanistic details of shock-induced initiation in a PBX; we examine four different mechanisms: (1) shock-focusing at sharp corners or edges and its dependency on the shape of the crystal and the strength of the applied shock; (2) debonding between crystal and binder interfaces; (3) collapse of voids in the binder located near an HMX crystal; and (4) the collapse of voids within HMX crystals. Insights are obtained into the relative contributions of these mechanisms to the ignition and growth of hotspots. Understanding these mechanisms of energy localization and their relative importance for hotspot formation and initiation sensitivity of PBXs will aid in the design of energetic material-driven systems with controlled sensitivity, to prevent accidental initiation and ensure reliable performance.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.