Managing the risk of the energy performance gap in non-domestic buildings

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
David Thompson, E. Burman, D. Mumovic, M. Davies
{"title":"Managing the risk of the energy performance gap in non-domestic buildings","authors":"David Thompson, E. Burman, D. Mumovic, M. Davies","doi":"10.1177/01436244211008319","DOIUrl":null,"url":null,"abstract":"Energy use in buildings accounts for one-third of the overall global energy consumption and total building floor area continues to increase each year as new developments are constructed and delivered. If stringent climate goals are to be met, these buildings will need to consume less energy and emit less carbon. However, design intentions for energy efficient buildings are not always met in practice. This performance gap between calculated and measured energy use in buildings threatens the progress necessary to meet these energy targets. The aim of this paper is to identify the factors that contribute to the performance gap and propose solutions for reducing the gap in practice. A quantitative and qualitative analysis of two research programmes completed in the past few years was utilized for an in-depth look at the performance of around 50 non-domestic buildings in the United Kingdom. While no direct links were found between any one variable and the performance gap, several correlations exist between contributing factors indicating a complex, entangled web of interrelated problems. The multitude of the variables involved presents a formidable challenge in finding practical solutions. However, the results indicate that the combination of the ventilation strategy of a building and the building services control strategy during partial occupancy is a key determinant of the performance gap. A more straightforward procurement approach with clearly delineated targets and responsibilities, along with advanced and seasonal commissioning instituted at the beginning of a project and implemented after building completion can also be very effective in reducing the gap. Finally, mandatory requirements or an appropriate system of incentives for monitoring and disclosure of performance data can help identify many of the underlying issues affecting performance in-use and untangle some of the web of complex issues across the building sector. Practical application Awareness of the performance gap and knowledge of the factors contributing to its impact on the building industry is important for all stakeholders involved in the design, construction, operation and occupation of non-domestic buildings. Understanding potential solutions to mitigate these risks may help to reduce the prevalence and magnitude of the performance gap.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/01436244211008319","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Services Engineering Research & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01436244211008319","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

Energy use in buildings accounts for one-third of the overall global energy consumption and total building floor area continues to increase each year as new developments are constructed and delivered. If stringent climate goals are to be met, these buildings will need to consume less energy and emit less carbon. However, design intentions for energy efficient buildings are not always met in practice. This performance gap between calculated and measured energy use in buildings threatens the progress necessary to meet these energy targets. The aim of this paper is to identify the factors that contribute to the performance gap and propose solutions for reducing the gap in practice. A quantitative and qualitative analysis of two research programmes completed in the past few years was utilized for an in-depth look at the performance of around 50 non-domestic buildings in the United Kingdom. While no direct links were found between any one variable and the performance gap, several correlations exist between contributing factors indicating a complex, entangled web of interrelated problems. The multitude of the variables involved presents a formidable challenge in finding practical solutions. However, the results indicate that the combination of the ventilation strategy of a building and the building services control strategy during partial occupancy is a key determinant of the performance gap. A more straightforward procurement approach with clearly delineated targets and responsibilities, along with advanced and seasonal commissioning instituted at the beginning of a project and implemented after building completion can also be very effective in reducing the gap. Finally, mandatory requirements or an appropriate system of incentives for monitoring and disclosure of performance data can help identify many of the underlying issues affecting performance in-use and untangle some of the web of complex issues across the building sector. Practical application Awareness of the performance gap and knowledge of the factors contributing to its impact on the building industry is important for all stakeholders involved in the design, construction, operation and occupation of non-domestic buildings. Understanding potential solutions to mitigate these risks may help to reduce the prevalence and magnitude of the performance gap.
管理非住宅楼宇能源表现差距的风险
建筑能耗占全球总能耗的三分之一,随着新开发项目的建设和交付,建筑总占地面积每年都在持续增加。如果要实现严格的气候目标,这些建筑将需要消耗更少的能源和排放更少的碳。然而,节能建筑的设计意图在实践中并不总是得到满足。建筑中计算和测量的能源使用之间的这种性能差距威胁到实现这些能源目标所需的进展。本文的目的是确定造成绩效差距的因素,并提出在实践中缩小差距的解决方案。对过去几年完成的两个研究方案进行了定量和定性分析,深入研究了英国约50栋非住宅建筑的性能。虽然在任何一个变量和绩效差距之间都没有发现直接联系,但在促成因素之间存在一些相关性,表明相互关联的问题错综复杂。所涉及的变量众多,给寻找切实可行的解决方案带来了巨大挑战。然而,结果表明,在部分入住期间,建筑物的通风策略和建筑服务控制策略的结合是性能差距的关键决定因素。一种更直接的采购方法,明确规定目标和责任,以及在项目开始时制定并在建筑完工后实施的提前和季节性调试,也可以非常有效地缩小差距。最后,监测和披露性能数据的强制性要求或适当的激励制度可以帮助识别影响使用性能的许多潜在问题,并解决整个建筑行业的一些复杂问题。实际应用对于参与非住宅建筑设计、施工、运营和占用的所有利益相关者来说,了解性能差距并了解其对建筑行业影响的因素非常重要。了解减轻这些风险的潜在解决方案可能有助于降低绩效差距的普遍性和规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Building Services Engineering Research & Technology
Building Services Engineering Research & Technology 工程技术-结构与建筑技术
CiteScore
4.30
自引率
5.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Building Services Engineering Research & Technology is one of the foremost, international peer reviewed journals that publishes the highest quality original research relevant to today’s Built Environment. Published in conjunction with CIBSE, this impressive journal reports on the latest research providing you with an invaluable guide to recent developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信