Survival of intracellular pathogens in response to mTORC1- or TRPML1-TFEB-induced xenophagy.

Autophagy reports Pub Date : 2023-03-19 eCollection Date: 2023-01-01 DOI:10.1080/27694127.2023.2191918
Mariana I Capurro, Akriti Prashar, Xiaodong Gao, Nicola L Jones
{"title":"Survival of intracellular pathogens in response to mTORC1- or TRPML1-TFEB-induced xenophagy.","authors":"Mariana I Capurro, Akriti Prashar, Xiaodong Gao, Nicola L Jones","doi":"10.1080/27694127.2023.2191918","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular pathogens establish persistent infections by generating reservoirs that protect them from the action of antibiotics and the host immune response. Novel therapeutics should then target the host pathways exploited by the pathogens to form these intracellular niches. An attractive strategy to achieve this is inducing xenophagy, the selective autophagy that recognizes and targets invading pathogens for degradation. However, some bacteria have evolved mechanisms to co-opt xenophagy for their own benefit. Therefore, in this study we determine the effect of inducing xenophagy by different pathways, namely the inhibition of MTOR or through TRPML1-TFEB activation, on the fate of pathogens that are either susceptible to, evade or require autophagy for intracellular survival. We identified a dose of rapamycin that exclusively induces autophagy through MTOR inhibition and used ML-SA1 to activate the TRPML1-TFEB pathway, which also increases lysosomal biogenesis. We found that ML-SA1 induced greater autophagy flux than rapamycin. By performing in vitro infections with <i>H. pylori, S</i>. Typhimurium, <i>S. flexneri, L. monocytogenes</i> and <i>S. aureus</i>, we established that ML-SA1 had a more potent effect than rapamycin in restricting the growth of pathogens susceptible to xenophagy. In the case of pathogens that produce effectors to block xenophagy, ML-SA1, but not rapamycin, resulted in bacterial killing. During <i>S. aureus</i> infection, which depends on autophagy for intracellular survival, ML-SA1 administration potentiated bacterial growth. We suggest that while targeting the xenophagy pathway holds promise for treatment of intracellular pathogens, a precision approach to select the correct target to induce effective bacterial killing is warranted. <b>Abbreviations</b>: 3-MA: 3-methyladenine, ATG: autophagy-related protein, Baf: bafilomycin A1; Ca2+: calcium, CFU: colony-forming units, DMSO: dimethyl sulfoxide, h: hour, <i>Hp: Helicobacter pylori</i>, hpi: hours post-infection, Lamp1: lysosomal-associated membrane protein 1, LC3: microtubule-associated protein 1A/1B-light chain, <i>Lm: Listeria monocytogenes</i>, LSD: lysosomal storage disorder, min: minutes, mTOR: mechanistic target of rapamycin; mTORC1: mechanistic target of rapamycin complex 1, MEF: mouse embryonic fibroblast, μM: micromolar, moi: multiplicity of infection, nM: nanomolar, OD: optical density, PBS: phosphate buffer saline, <i>Sa: Staphylococcus aureus</i>, SCV: <i>Salmonella</i> containing vacuole, Sifs: <i>Salmonella</i>-induced filaments, <i>Sf: Shigella flexneri</i>, SLAPs: Spacious Listeria containing phagosomes, <i>St: Salmonella</i> Typhimurium TFEB: transcription factor EB, TRPML1: transient receptor potential membrane channel 1, VacA: vacuolating cytotoxin, wt: wild-type.</p>","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":" ","pages":"2191918"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/27694127.2023.2191918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intracellular pathogens establish persistent infections by generating reservoirs that protect them from the action of antibiotics and the host immune response. Novel therapeutics should then target the host pathways exploited by the pathogens to form these intracellular niches. An attractive strategy to achieve this is inducing xenophagy, the selective autophagy that recognizes and targets invading pathogens for degradation. However, some bacteria have evolved mechanisms to co-opt xenophagy for their own benefit. Therefore, in this study we determine the effect of inducing xenophagy by different pathways, namely the inhibition of MTOR or through TRPML1-TFEB activation, on the fate of pathogens that are either susceptible to, evade or require autophagy for intracellular survival. We identified a dose of rapamycin that exclusively induces autophagy through MTOR inhibition and used ML-SA1 to activate the TRPML1-TFEB pathway, which also increases lysosomal biogenesis. We found that ML-SA1 induced greater autophagy flux than rapamycin. By performing in vitro infections with H. pylori, S. Typhimurium, S. flexneri, L. monocytogenes and S. aureus, we established that ML-SA1 had a more potent effect than rapamycin in restricting the growth of pathogens susceptible to xenophagy. In the case of pathogens that produce effectors to block xenophagy, ML-SA1, but not rapamycin, resulted in bacterial killing. During S. aureus infection, which depends on autophagy for intracellular survival, ML-SA1 administration potentiated bacterial growth. We suggest that while targeting the xenophagy pathway holds promise for treatment of intracellular pathogens, a precision approach to select the correct target to induce effective bacterial killing is warranted. Abbreviations: 3-MA: 3-methyladenine, ATG: autophagy-related protein, Baf: bafilomycin A1; Ca2+: calcium, CFU: colony-forming units, DMSO: dimethyl sulfoxide, h: hour, Hp: Helicobacter pylori, hpi: hours post-infection, Lamp1: lysosomal-associated membrane protein 1, LC3: microtubule-associated protein 1A/1B-light chain, Lm: Listeria monocytogenes, LSD: lysosomal storage disorder, min: minutes, mTOR: mechanistic target of rapamycin; mTORC1: mechanistic target of rapamycin complex 1, MEF: mouse embryonic fibroblast, μM: micromolar, moi: multiplicity of infection, nM: nanomolar, OD: optical density, PBS: phosphate buffer saline, Sa: Staphylococcus aureus, SCV: Salmonella containing vacuole, Sifs: Salmonella-induced filaments, Sf: Shigella flexneri, SLAPs: Spacious Listeria containing phagosomes, St: Salmonella Typhimurium TFEB: transcription factor EB, TRPML1: transient receptor potential membrane channel 1, VacA: vacuolating cytotoxin, wt: wild-type.

细胞内病原体对mTORC1-或trpml1 - tfeb诱导的异种吞噬反应的存活
细胞内病原体通过产生保护它们免受抗生素和宿主免疫反应作用的宿主来建立持续感染。新的治疗方法应该针对病原体利用的宿主途径来形成这些细胞内生态位。实现这一目标的一个有吸引力的策略是诱导异体自噬,选择性自噬识别并靶向入侵病原体进行降解。然而,一些细菌已经进化出了为了自身利益而选择异食的机制。因此,在本研究中,我们确定了通过不同途径诱导异种自噬的影响,即抑制MTOR或通过TRPML1-TFEB激活,对细胞内生存易感、逃避或需要自噬的病原体命运的影响。我们确定了一种剂量的雷帕霉素通过MTOR抑制来诱导自噬,并使用ML-SA1激活TRPML1-TFEB途径,这也增加了溶酶体的生物发生。我们发现ML-SA1诱导的自噬通量比雷帕霉素更大。通过幽门螺杆菌、鼠伤寒沙门氏菌、弗氏沙门氏菌、单核增生乳杆菌和金黄色葡萄球菌的体外感染,我们发现ML-SA1在抑制异种吞噬易感病原体生长方面比雷帕霉素更有效。在病原体产生效应物阻止异种吞噬的情况下,ML-SA1导致细菌死亡,而不是雷帕霉素。金黄色葡萄球菌感染依赖于细胞内自噬存活,在感染过程中,ML-SA1可增强细菌生长。我们认为,虽然靶向异噬途径有望治疗细胞内病原体,但需要一种精确的方法来选择正确的靶点来诱导有效的细菌杀伤。缩写:3-MA: 3-甲基腺嘌呤,ATG:自噬相关蛋白,Baf:巴菲霉素A1;Ca2+:钙,CFU:集落形成单位,DMSO:二甲亚砜,h:小时,Hp:幽门螺杆菌,hpi:感染后小时,Lamp1:溶酶体相关膜蛋白1,LC3:微管相关蛋白1A/ 1b轻链,Lm:单核细胞增生李斯特菌,LSD:溶酶体储存障碍,min:分钟,mTOR:雷帕霉素的机制靶点;mTORC1:雷帕霉素复合物1的机制靶点,MEF:小鼠胚胎成纤维细胞,μM:微摩尔,moi:感染多重性,nM:纳摩尔,OD:光密度,PBS:磷酸盐缓冲盐水,Sa:金黄色葡萄球菌,SCV:含沙门菌液泡,Sifs:沙门菌诱导丝,Sf:福氏贺氏菌,SLAPs:含吞噬体的李斯特菌,St:鼠伤寒沙门氏菌TFEB:转录因子EB, TRPML1:瞬时受体电位膜通道1,VacA:液泡形成细胞毒素,野生型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信