Laser Peening Analysis of Aluminum 5083: A Finite Element Study

IF 1.3 Q3 INSTRUMENTS & INSTRUMENTATION
A. Tajyar, Noah Holtham, N. Brooks, L. Hackel, Vincent R. Sherman, Alireza Beheshti, K. Davami
{"title":"Laser Peening Analysis of Aluminum 5083: A Finite Element Study","authors":"A. Tajyar, Noah Holtham, N. Brooks, L. Hackel, Vincent R. Sherman, Alireza Beheshti, K. Davami","doi":"10.3390/qubs5040034","DOIUrl":null,"url":null,"abstract":"In this research, a finite element (FE) technique was used to predict the residual stresses in laser-peened aluminum 5083 at different power densities. A dynamic pressure profile was used to create the pressure wave in an explicit model, and the stress results were extracted once the solution was stabilized. It is shown that as power density increases from 0.5 to 4 GW/cm2, the induced residual stresses develop monotonically deeper from 0.42 to 1.40 mm. However, with an increase in the power density, the maximum magnitude of the sub-surface stresses increases only up to a certain threshold (1 GW/cm2 for aluminum 5083). Above this threshold, a complex interaction of the elastic and plastic waves occurring at peak pressures above ≈2.5 Hugoniot Elastic Limit (HEL) results in decreased surface stresses. The FE results are corroborated with physical experiments and observations.","PeriodicalId":31879,"journal":{"name":"Quantum Beam Science","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Beam Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/qubs5040034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 2

Abstract

In this research, a finite element (FE) technique was used to predict the residual stresses in laser-peened aluminum 5083 at different power densities. A dynamic pressure profile was used to create the pressure wave in an explicit model, and the stress results were extracted once the solution was stabilized. It is shown that as power density increases from 0.5 to 4 GW/cm2, the induced residual stresses develop monotonically deeper from 0.42 to 1.40 mm. However, with an increase in the power density, the maximum magnitude of the sub-surface stresses increases only up to a certain threshold (1 GW/cm2 for aluminum 5083). Above this threshold, a complex interaction of the elastic and plastic waves occurring at peak pressures above ≈2.5 Hugoniot Elastic Limit (HEL) results in decreased surface stresses. The FE results are corroborated with physical experiments and observations.
5083铝激光喷丸分析的有限元研究
在本研究中,采用有限元方法预测了不同功率密度下激光喷丸铝5083的残余应力。在显式模型中利用动态压力剖面产生压力波,在溶液稳定后提取应力结果。结果表明,当功率密度从0.5 GW/cm2增加到4 GW/cm2时,诱导残余应力从0.42 mm单调增加到1.40 mm。然而,随着功率密度的增加,次表面应力的最大幅度仅增加到一定阈值(铝5083为1 GW/cm2)。超过这个阈值,在峰值压力大于≈2.5 Hugoniot弹性极限(HEL)时,弹性波和塑性波的复杂相互作用导致表面应力降低。有限元计算结果与物理实验和观测结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
28.60%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信