{"title":"R\n $\\mathbb {R}$\n -motivic stable stems","authors":"Eva Belmont, Daniel C. Isaksen","doi":"10.1112/topo.12256","DOIUrl":null,"url":null,"abstract":"<p>We compute some <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-motivic stable homotopy groups. For <math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>−</mo>\n <mi>w</mi>\n <mo>⩽</mo>\n <mn>11</mn>\n </mrow>\n <annotation>$s - w \\leqslant 11$</annotation>\n </semantics></math>, we describe the motivic stable homotopy groups <math>\n <semantics>\n <msub>\n <mi>π</mi>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>w</mi>\n </mrow>\n </msub>\n <annotation>$\\pi _{s,w}$</annotation>\n </semantics></math> of a completion of the <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-motivic sphere spectrum. We apply the <math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math>-Bockstein spectral sequence to obtain <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-motivic <math>\n <semantics>\n <mo>Ext</mo>\n <annotation>$\\operatorname{Ext}$</annotation>\n </semantics></math> groups from the <math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathbb {C}$</annotation>\n </semantics></math>-motivic <math>\n <semantics>\n <mo>Ext</mo>\n <annotation>$\\operatorname{Ext}$</annotation>\n </semantics></math> groups, which are well understood in a large range. These <math>\n <semantics>\n <mo>Ext</mo>\n <annotation>$\\operatorname{Ext}$</annotation>\n </semantics></math> groups are the input to the <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-motivic Adams spectral sequence. We fully analyze the Adams differentials in a range, and we also analyze hidden extensions by <math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math>, 2, and <math>\n <semantics>\n <mi>η</mi>\n <annotation>$\\eta$</annotation>\n </semantics></math>. As a consequence of our computations, we recover Mahowald invariants of many low-dimensional classical stable homotopy elements.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
We compute some -motivic stable homotopy groups. For , we describe the motivic stable homotopy groups of a completion of the -motivic sphere spectrum. We apply the -Bockstein spectral sequence to obtain -motivic groups from the -motivic groups, which are well understood in a large range. These groups are the input to the -motivic Adams spectral sequence. We fully analyze the Adams differentials in a range, and we also analyze hidden extensions by , 2, and . As a consequence of our computations, we recover Mahowald invariants of many low-dimensional classical stable homotopy elements.