R $\mathbb {R}$ -motivic stable stems

Pub Date : 2022-07-27 DOI:10.1112/topo.12256
Eva Belmont, Daniel C. Isaksen
{"title":"R\n $\\mathbb {R}$\n -motivic stable stems","authors":"Eva Belmont,&nbsp;Daniel C. Isaksen","doi":"10.1112/topo.12256","DOIUrl":null,"url":null,"abstract":"<p>We compute some <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-motivic stable homotopy groups. For <math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>−</mo>\n <mi>w</mi>\n <mo>⩽</mo>\n <mn>11</mn>\n </mrow>\n <annotation>$s - w \\leqslant 11$</annotation>\n </semantics></math>, we describe the motivic stable homotopy groups <math>\n <semantics>\n <msub>\n <mi>π</mi>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>w</mi>\n </mrow>\n </msub>\n <annotation>$\\pi _{s,w}$</annotation>\n </semantics></math> of a completion of the <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-motivic sphere spectrum. We apply the <math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math>-Bockstein spectral sequence to obtain <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-motivic <math>\n <semantics>\n <mo>Ext</mo>\n <annotation>$\\operatorname{Ext}$</annotation>\n </semantics></math> groups from the <math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathbb {C}$</annotation>\n </semantics></math>-motivic <math>\n <semantics>\n <mo>Ext</mo>\n <annotation>$\\operatorname{Ext}$</annotation>\n </semantics></math> groups, which are well understood in a large range. These <math>\n <semantics>\n <mo>Ext</mo>\n <annotation>$\\operatorname{Ext}$</annotation>\n </semantics></math> groups are the input to the <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-motivic Adams spectral sequence. We fully analyze the Adams differentials in a range, and we also analyze hidden extensions by <math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math>, 2, and <math>\n <semantics>\n <mi>η</mi>\n <annotation>$\\eta$</annotation>\n </semantics></math>. As a consequence of our computations, we recover Mahowald invariants of many low-dimensional classical stable homotopy elements.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We compute some R $\mathbb {R}$ -motivic stable homotopy groups. For s w 11 $s - w \leqslant 11$ , we describe the motivic stable homotopy groups π s , w $\pi _{s,w}$ of a completion of the R $\mathbb {R}$ -motivic sphere spectrum. We apply the ρ $\rho$ -Bockstein spectral sequence to obtain R $\mathbb {R}$ -motivic Ext $\operatorname{Ext}$ groups from the C $\mathbb {C}$ -motivic Ext $\operatorname{Ext}$ groups, which are well understood in a large range. These Ext $\operatorname{Ext}$ groups are the input to the R $\mathbb {R}$ -motivic Adams spectral sequence. We fully analyze the Adams differentials in a range, and we also analyze hidden extensions by ρ $\rho$ , 2, and η $\eta$ . As a consequence of our computations, we recover Mahowald invariants of many low-dimensional classical stable homotopy elements.

分享
查看原文
R $\mathbb {R}$ -动力稳定系统
我们计算了一些R $\mathbb {R}$ -动力稳定同伦群。对于s−w≤11 $s - w \leqslant 11$,我们描述了动力稳定同伦群π s,w $\pi _{s,w}$完成了R $\mathbb {R}$ -动力球谱。我们应用ρ $\rho$ -Bockstein谱序列从C $\mathbb {C}$ -motivic Ext $\operatorname{Ext}$基得到R $\mathbb {R}$ -motivic Ext $\operatorname{Ext}$基,这在很大程度上是可以理解的。这些Ext $\operatorname{Ext}$组是R $\mathbb {R}$ -动机亚当斯光谱序列的输入。我们在一个范围内充分分析了Adams微分,我们还分析了ρ $\rho$, 2和η $\eta$的隐藏扩展。作为计算的结果,我们恢复了许多低维经典稳定同伦元素的Mahowald不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信