Solution NMR backbone assignment of the SASH1 SLy proteins associated disordered region (SPIDER)

IF 0.8 4区 生物学 Q4 BIOPHYSICS
Christopher M. Clements, Beat Vögeli, Yiqun G. Shellman, Morkos A. Henen
{"title":"Solution NMR backbone assignment of the SASH1 SLy proteins associated disordered region (SPIDER)","authors":"Christopher M. Clements,&nbsp;Beat Vögeli,&nbsp;Yiqun G. Shellman,&nbsp;Morkos A. Henen","doi":"10.1007/s12104-023-10134-6","DOIUrl":null,"url":null,"abstract":"<div><p>SASH1 is a scaffold protein with context-dependent biological functions in cell adhesion, tumor metastasis, lung development, and pigmentation. As a member of the SLy protein family, it contains the conserved SLY, SH3, and SAM domains. The 19 kDa SLY domain harbors over 70% of the SASH1 variants associated with pigmentation disorders. However, its solution structure or dynamics have not been investigated yet, and its exact position in the sequence is not clearly defined. Based on the bioinformatic and experimental evidence, we propose renaming this region to the <u>S</u>Ly <u>P</u>roteins Assoc<u>i</u>ated <u>D</u>isorder<u>e</u>d <u>R</u>egion (SPIDER) and defining the exact position to be amino acids 400–554 of SASH1. We have previously identified a variant in this region linked to a pigmentation disorder, S519N. Here, we used a novel deuteration technique, a suite of TROSY-based 3D NMR experiments, and a high-quality HNN to obtain near complete solution backbone assignment of SASH1’s SPIDER. A comparison with the chemical shifts of non-variant (S519) SPIDER shows that the S519N substitution does not alter the free form solution structural propensities of SPIDER. This assignment is the first step to characterize the role of SPIDER in SASH1-mediated cellular functions and provides a model for the future study of sister SPIDER domains in the SLy protein family.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"151 - 157"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10134-6.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-023-10134-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

SASH1 is a scaffold protein with context-dependent biological functions in cell adhesion, tumor metastasis, lung development, and pigmentation. As a member of the SLy protein family, it contains the conserved SLY, SH3, and SAM domains. The 19 kDa SLY domain harbors over 70% of the SASH1 variants associated with pigmentation disorders. However, its solution structure or dynamics have not been investigated yet, and its exact position in the sequence is not clearly defined. Based on the bioinformatic and experimental evidence, we propose renaming this region to the SLy Proteins Associated Disordered Region (SPIDER) and defining the exact position to be amino acids 400–554 of SASH1. We have previously identified a variant in this region linked to a pigmentation disorder, S519N. Here, we used a novel deuteration technique, a suite of TROSY-based 3D NMR experiments, and a high-quality HNN to obtain near complete solution backbone assignment of SASH1’s SPIDER. A comparison with the chemical shifts of non-variant (S519) SPIDER shows that the S519N substitution does not alter the free form solution structural propensities of SPIDER. This assignment is the first step to characterize the role of SPIDER in SASH1-mediated cellular functions and provides a model for the future study of sister SPIDER domains in the SLy protein family.

Abstract Image

SASH1 SLy蛋白相关紊乱区(SPIDER)的溶液核磁共振骨架分配
SASH1是一种支架蛋白,在细胞粘附、肿瘤转移、肺发育和色素沉着等方面具有环境依赖性的生物学功能。作为SLy蛋白家族的成员,它包含保守的SLy、SH3和SAM结构域。19 kDa的SLY结构域包含70%以上与色素沉着疾病相关的SASH1变异。然而,其解的结构或动力学尚未被研究,其在序列中的确切位置也没有明确的定义。基于生物信息学和实验证据,我们建议将该区域重新命名为SLy蛋白相关紊乱区(SPIDER),并确定其确切位置为SASH1的400-554氨基酸。我们之前已经在这个区域发现了一个与色素沉着障碍有关的变异,S519N。在这里,我们使用了一种新颖的氘化技术,一套基于trosy的3D核磁共振实验,以及高质量的HNN来获得SASH1的SPIDER的接近完整的溶液骨架分配。与非变型(S519) SPIDER的化学位移比较表明,S519N取代没有改变SPIDER的自由形态溶液结构倾向。这是表征SPIDER在sash1介导的细胞功能中的作用的第一步,并为未来研究SLy蛋白家族中的姐妹SPIDER结构域提供了一个模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信