Pressure inequalities for Gibbs measures of countable Markov shifts

Pub Date : 2021-04-03 DOI:10.1080/14689367.2021.1905777
René Rühr
{"title":"Pressure inequalities for Gibbs measures of countable Markov shifts","authors":"René Rühr","doi":"10.1080/14689367.2021.1905777","DOIUrl":null,"url":null,"abstract":"We provide a quantification of the uniqueness of Gibbs measure for topologically mixing countable Markov shifts with locally Hölder continuous potentials. Corollaries for speed of convergence for approximation by finite subsystems are also given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14689367.2021.1905777","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2021.1905777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We provide a quantification of the uniqueness of Gibbs measure for topologically mixing countable Markov shifts with locally Hölder continuous potentials. Corollaries for speed of convergence for approximation by finite subsystems are also given.
分享
查看原文
可数Markov位移的Gibbs测度的压力不等式
我们给出了拓扑混合可数Markov位移与局部Hölder连续势的Gibbs测度的唯一性的量化。给出了有限子系统逼近收敛速度的推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信