{"title":"A Flexible Multiband Dendritic Structure Fractal Antenna for 4G/5G/WLAN/Bluetooth Applications","authors":"Zhen Yu, Guodong Zhang, Xiaoying Ran, Ruirong Niu, Runzhi Sun, Ziheng Lin, Zewei Lu","doi":"10.1155/2023/6496757","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this study, a flexible multiband fractal antenna mimicking dendrite structure is proposed and designed by combining bionics and fractal theory. The dendritic structure of neurons is extracted and simplified into a simple and clear geometric structure. The initial antenna model is obtained by fractal operation on the geometric structure, and finally, four effective bands are obtained. The antenna is printed on a 50<sup>∗</sup>70<sup>∗</sup>0.1 mm<sup>3</sup> polyimide dielectric board and fed by a coplanar waveguide. This paper discusses the effect of the human body on the performance of the antenna and the robustness of the antenna in the bending regime. The gain, efficiency, and cross-polarization of the antenna were tested using a microwave anechoic chamber. The measured antenna covers 1.37 GHz-1.93 GHz (relative bandwidth 35%), 2.25 GHz-2.51 GHz (relative bandwidth 10.7%), 3.13 GHz-3.81 GHz (relative bandwidth 19.3%), and 4.46 GHz-5.5 GHz (relative bandwidth 21.1%) four operating frequency bands. The maximum gain is 6.05 dBi and the maximum efficiency is 91.05%. The antenna can be used for Bluetooth WLAN (Wireless Local Area Network), 4G (4th Generation Communication System), 5G (5th Generation Mobile Communication System), WiMAX (Worldwide Interoperability for Microwave Access), etc. The test results are in good agreement with the simulation results, which proves that the antenna can meet various wireless communication requirements.</p>\n </div>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2023 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/6496757","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/6496757","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a flexible multiband fractal antenna mimicking dendrite structure is proposed and designed by combining bionics and fractal theory. The dendritic structure of neurons is extracted and simplified into a simple and clear geometric structure. The initial antenna model is obtained by fractal operation on the geometric structure, and finally, four effective bands are obtained. The antenna is printed on a 50∗70∗0.1 mm3 polyimide dielectric board and fed by a coplanar waveguide. This paper discusses the effect of the human body on the performance of the antenna and the robustness of the antenna in the bending regime. The gain, efficiency, and cross-polarization of the antenna were tested using a microwave anechoic chamber. The measured antenna covers 1.37 GHz-1.93 GHz (relative bandwidth 35%), 2.25 GHz-2.51 GHz (relative bandwidth 10.7%), 3.13 GHz-3.81 GHz (relative bandwidth 19.3%), and 4.46 GHz-5.5 GHz (relative bandwidth 21.1%) four operating frequency bands. The maximum gain is 6.05 dBi and the maximum efficiency is 91.05%. The antenna can be used for Bluetooth WLAN (Wireless Local Area Network), 4G (4th Generation Communication System), 5G (5th Generation Mobile Communication System), WiMAX (Worldwide Interoperability for Microwave Access), etc. The test results are in good agreement with the simulation results, which proves that the antenna can meet various wireless communication requirements.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.