Modelling crash severity outcomes for low speed urban roads using back propagation – Artificial neural network (BP – ANN) – A case study in Indian context
{"title":"Modelling crash severity outcomes for low speed urban roads using back propagation – Artificial neural network (BP – ANN) – A case study in Indian context","authors":"Santanu Barman , Ranja Bandyopadhyaya","doi":"10.1016/j.iatssr.2023.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>This work analyses influence of road, weather and crash-specific factors on crash severity outcomes for low-speed urban midblock sections and intersections, for day and night time, using Backpropagation–Artificial Neural Network (BP–ANN). Five-year crash data (2015–2019) from 82Km urban road network of Patna, India was used for the study. The road factors include pavement width, distress condition, marking; shoulder type, condition; road section type as mid-block, intersection and intersection control. Weather factors include season of crash, fog or rain at crash time. Crash factor include collision partner, type and crash time. The most appropriate BP–ANN model architecture was estimated using Misclassification-Rate. It was observed that midblock segments witness higher severities during daytime, whereas intersections witness higher severities during night. Controlled intersections are safer compared to un-controlled intersections. Pavement distress greatly increase the chance of higher severities. Narrow roads record greater severities during day due to lack of surveillance.</p></div>","PeriodicalId":47059,"journal":{"name":"IATSS Research","volume":"47 3","pages":"Pages 382-400"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IATSS Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0386111223000377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 1
Abstract
This work analyses influence of road, weather and crash-specific factors on crash severity outcomes for low-speed urban midblock sections and intersections, for day and night time, using Backpropagation–Artificial Neural Network (BP–ANN). Five-year crash data (2015–2019) from 82Km urban road network of Patna, India was used for the study. The road factors include pavement width, distress condition, marking; shoulder type, condition; road section type as mid-block, intersection and intersection control. Weather factors include season of crash, fog or rain at crash time. Crash factor include collision partner, type and crash time. The most appropriate BP–ANN model architecture was estimated using Misclassification-Rate. It was observed that midblock segments witness higher severities during daytime, whereas intersections witness higher severities during night. Controlled intersections are safer compared to un-controlled intersections. Pavement distress greatly increase the chance of higher severities. Narrow roads record greater severities during day due to lack of surveillance.
期刊介绍:
First published in 1977 as an international journal sponsored by the International Association of Traffic and Safety Sciences, IATSS Research has contributed to the dissemination of interdisciplinary wisdom on ideal mobility, particularly in Asia. IATSS Research is an international refereed journal providing a platform for the exchange of scientific findings on transportation and safety across a wide range of academic fields, with particular emphasis on the links between scientific findings and practice in society and cultural contexts. IATSS Research welcomes submission of original research articles and reviews that satisfy the following conditions: 1.Relevant to transportation and safety, and the multiple impacts of transportation systems on security, human health, and the environment. 2.Contains important policy and practical implications based on scientific evidence in the applicable academic field. In addition to welcoming general submissions, IATSS Research occasionally plans and publishes special feature sections and special issues composed of invited articles addressing specific topics.