Thomas Böhme, Jochen Harant, Matthias Kriesell, Samuel Mohr, Jens M. Schmidt
{"title":"Rooted minors and locally spanning subgraphs","authors":"Thomas Böhme, Jochen Harant, Matthias Kriesell, Samuel Mohr, Jens M. Schmidt","doi":"10.1002/jgt.23012","DOIUrl":null,"url":null,"abstract":"<p>Results on the existence of various types of spanning subgraphs of graphs are milestones in structural graph theory and have been diversified in several directions. In the present paper, we consider “local” versions of such statements. In 1966, for instance, D. W. Barnette proved that a 3-connected planar graph contains a spanning tree of maximum degree at most 3. A local translation of this statement is that if <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a planar graph, <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> is a subset of specified vertices of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> cannot be separated in <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> by removing two or fewer vertices of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, then <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has a tree of maximum degree at most 3 containing all vertices of <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math>. Our results constitute a general machinery for strengthening statements about <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-connected graphs (for <math>\n <semantics>\n <mrow>\n <mn>1</mn>\n \n <mo>≤</mo>\n \n <mi>k</mi>\n \n <mo>≤</mo>\n \n <mn>4</mn>\n </mrow>\n <annotation> $1\\le k\\le 4$</annotation>\n </semantics></math>) to locally spanning versions, that is, subgraphs containing a set <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $X\\subseteq V(G)$</annotation>\n </semantics></math> of a (not necessarily planar) graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> in which only <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> has high connectedness. Given a graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $X\\subseteq V(G)$</annotation>\n </semantics></math>, we say <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> is a <i>minor of</i> <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> <i>rooted at</i> <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math>, if <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> is a minor of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that each bag of <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> contains at most one vertex of <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> is a subset of the union of all bags. We show that <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has a highly connected minor rooted at <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> if <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n \n <mo>⊆</mo>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $X\\subseteq V(G)$</annotation>\n </semantics></math> cannot be separated in <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> by removing a few vertices of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Combining these investigations and the theory of Tutte paths in the planar case yields locally spanning versions of six well-known results about degree-bounded trees, Hamiltonian paths and cycles, and 2-connected subgraphs of graphs.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"105 2","pages":"209-229"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23012","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Results on the existence of various types of spanning subgraphs of graphs are milestones in structural graph theory and have been diversified in several directions. In the present paper, we consider “local” versions of such statements. In 1966, for instance, D. W. Barnette proved that a 3-connected planar graph contains a spanning tree of maximum degree at most 3. A local translation of this statement is that if is a planar graph, is a subset of specified vertices of such that cannot be separated in by removing two or fewer vertices of , then has a tree of maximum degree at most 3 containing all vertices of . Our results constitute a general machinery for strengthening statements about -connected graphs (for ) to locally spanning versions, that is, subgraphs containing a set of a (not necessarily planar) graph in which only has high connectedness. Given a graph and , we say is a minor ofrooted at , if is a minor of such that each bag of contains at most one vertex of and is a subset of the union of all bags. We show that has a highly connected minor rooted at if cannot be separated in by removing a few vertices of . Combining these investigations and the theory of Tutte paths in the planar case yields locally spanning versions of six well-known results about degree-bounded trees, Hamiltonian paths and cycles, and 2-connected subgraphs of graphs.
图的各种类型的生成子图的存在性的研究结果是结构图理论的里程碑,并在多个方向上得到了发展。在本文中,我们考虑这些陈述的“局部”版本。例如,在1966年,D. W. Barnette证明了一个3连通的平面图包含一个最大度不超过3的生成树。这句话的局部翻译是,如果是一个平面图,是不能通过移除的两个或更少的顶点来分离的特定顶点的子集,那么有一个包含所有顶点的最大度不超过3的树。我们的结果构成了一个通用的机制,用于将关于连通图(for)的陈述强化为局部生成版本,即包含一组(不一定是平面)图的子图,其中只有高连通性。给定一个图,我们说它是根于的次次,它是次次,使得每个袋最多包含一个顶点并且是所有袋的并集的子集。我们证明了它有一个高度连接的小根,它不能通过移除的几个顶点来分离。结合这些研究和平面情况下的Tutte路径理论,我们得到了关于度有界树、哈密顿路径和环以及图的2连通子图的六个著名结果的局部生成版本。
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .