Methanol as a Marine Fuel for Greener Shipping: Case Study Tanker Vessel

IF 0.5 4区 工程技术 Q4 ENGINEERING, MARINE
N. R. Ammar
{"title":"Methanol as a Marine Fuel for Greener Shipping: Case Study Tanker Vessel","authors":"N. R. Ammar","doi":"10.5957/jspd.03220012","DOIUrl":null,"url":null,"abstract":"\n \n The present paper proposes using methanol fuel in ships to meet emissions regulations established by the International Maritime Organization. An analysis of the use of twin fuel engines operated by diesel and methanol has been conducted from environmental and cost-effective viewpoints. As a case study, a tanker vessel operated by two fuels was investigated. The environmental results showed decreases in SOx, NOx, PM, CO2, and CO pollutant emissions by 90%, 76.80%, 83.49%, 6.43%, and 55.63%, respectively. A selective catalytic reduction (SCR) measure is installed onboard the vessel to decrease NOx emissions in case diesel fuel is used. Economically, the dual-fuel engine will save on SCR costs. The cost-effectiveness values for using a methanol engine will be $242.3/ton and $764.7/ton for reducing CO2 and NOx emissions, respectively. Finally, the cost-effectiveness for reducing NOx emissions using SCR system is $536.6/ton for the conventional diesel engine.\n \n \n \n The majority of all cargo delivered worldwide is transported by sea (Zhou et al. 2020; Aarflot et al. 2022). Petroleum and other liquid fuels are the dominant sources for transporting this cargo. According to the International Maritime Organization (IMO), worldwide ships consume 309 million tons of fuel annually. These fuel consumptions result in yearly emissions of 11 million tons of sulfur oxides (SOx), 22 million tons of nitrogen oxides (NOx), 1.71 million tons of particulate matter (PM), 1056 million tons of carbon dioxide (CO2), and 844 million tons of carbon monoxide (CO) (IMO 2020). These emissions contribute to air pollution and climate change, highlighting the need for more sustainable shipping practices.\n","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/jspd.03220012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper proposes using methanol fuel in ships to meet emissions regulations established by the International Maritime Organization. An analysis of the use of twin fuel engines operated by diesel and methanol has been conducted from environmental and cost-effective viewpoints. As a case study, a tanker vessel operated by two fuels was investigated. The environmental results showed decreases in SOx, NOx, PM, CO2, and CO pollutant emissions by 90%, 76.80%, 83.49%, 6.43%, and 55.63%, respectively. A selective catalytic reduction (SCR) measure is installed onboard the vessel to decrease NOx emissions in case diesel fuel is used. Economically, the dual-fuel engine will save on SCR costs. The cost-effectiveness values for using a methanol engine will be $242.3/ton and $764.7/ton for reducing CO2 and NOx emissions, respectively. Finally, the cost-effectiveness for reducing NOx emissions using SCR system is $536.6/ton for the conventional diesel engine. The majority of all cargo delivered worldwide is transported by sea (Zhou et al. 2020; Aarflot et al. 2022). Petroleum and other liquid fuels are the dominant sources for transporting this cargo. According to the International Maritime Organization (IMO), worldwide ships consume 309 million tons of fuel annually. These fuel consumptions result in yearly emissions of 11 million tons of sulfur oxides (SOx), 22 million tons of nitrogen oxides (NOx), 1.71 million tons of particulate matter (PM), 1056 million tons of carbon dioxide (CO2), and 844 million tons of carbon monoxide (CO) (IMO 2020). These emissions contribute to air pollution and climate change, highlighting the need for more sustainable shipping practices.
甲醇作为绿色航运的船用燃料——以油轮为例
本文建议在船舶上使用甲醇燃料,以满足国际海事组织制定的排放法规。从环境和成本效益的角度对柴油和甲醇双燃料发动机的使用进行了分析。作为案例研究,对一艘使用两种燃料的油轮进行了调查。环境结果显示,SOx、NOx、PM、CO2和CO污染物排放量分别减少了90%、76.80%、83.49%、6.43%和55.63%。船上安装了选择性催化还原(SCR)措施,以在使用柴油燃料的情况下减少NOx排放。在经济上,双燃料发动机将节省SCR成本。使用甲醇发动机减少二氧化碳和氮氧化物排放的成本效益值分别为242.3美元/吨和764.7美元/吨。最后,传统柴油发动机使用SCR系统减少NOx排放的成本效益为536.6美元/吨。全球交付的大部分货物都是通过海运运输的(Zhou等人,2020;Aarflot等人,2022)。石油和其他液体燃料是运输这种货物的主要来源。根据国际海事组织(IMO)的数据,全球船舶每年消耗3.09亿吨燃料。这些燃料消耗导致每年1100万吨硫氧化物(SOx)、2200万吨氮氧化物(NOx)、171万吨颗粒物(PM)、10.56亿吨二氧化碳(CO2)和8.44亿吨一氧化碳(CO)的排放(IMO 2020)。这些排放导致了空气污染和气候变化,凸显了更可持续的航运做法的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信