On the crossing numbers of the join products of five graphs on six vertices with discrete graph

IF 1.4 4区 数学 Q1 MATHEMATICS
Stefan Berezný, M. Staš
{"title":"On the crossing numbers of the join products of five graphs on six vertices with discrete graph","authors":"Stefan Berezný, M. Staš","doi":"10.37193/cjm.2023.02.03","DOIUrl":null,"url":null,"abstract":"The crossing number $\\mathrm{cr}(G)$ of a graph $G$ is the minimum number of edge crossings over all drawings of $G$ in the plane. In the paper, the crossing number of the join product $G^\\ast + D_n$ for the connected graph $G^\\ast$ on six vertices consisting of one path on four vertices $P_4$ and two leaves adjacent with the same outer vertex of the path $P_4$ is given, where $D_n$ consists of $n$ isolated vertices. Finally, by adding some edges to the graph $G^\\ast$, we obtain the crossing numbers of the join products of other four graphs with $D_n$.","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.02.03","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The crossing number $\mathrm{cr}(G)$ of a graph $G$ is the minimum number of edge crossings over all drawings of $G$ in the plane. In the paper, the crossing number of the join product $G^\ast + D_n$ for the connected graph $G^\ast$ on six vertices consisting of one path on four vertices $P_4$ and two leaves adjacent with the same outer vertex of the path $P_4$ is given, where $D_n$ consists of $n$ isolated vertices. Finally, by adding some edges to the graph $G^\ast$, we obtain the crossing numbers of the join products of other four graphs with $D_n$.
用离散图论六顶点上五图连接积的交叉数
图$G$的交叉数$\ mathm {cr}(G)$是平面上所有图形$G$的最小交叉数。本文给出了连通图$G^\ast$在六个顶点上的连接积$G^\ast + D_n$的交叉数,该连通图$G^\ast$由四个顶点$P_4$上的一条路径和与路径$P_4$的相同外部顶点相邻的两个叶组成,其中$D_n$由$n$孤立顶点组成。最后,通过向图$G^\ast$添加一些边,我们得到了与$D_n$的其他四个图的连接积的交叉数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信