{"title":"Real-time underwater polarization imaging without relying on background","authors":"Jinxin Deng , Jingping Zhu , Haoxiang Li, Xiangzhe Zhang, Fengqi Guo, Xun Hou","doi":"10.1016/j.optlaseng.2023.107721","DOIUrl":null,"url":null,"abstract":"<div><p>Polarization imaging has excellent potential for use in underwater application scenarios due to efficient elimination of backscattered light. In most studies, two images that contain the maximum and minimum visible backscatter are obtained by finding the brightest and darkest moments during the rotation of the polarizer. In addition, the background region must be included in the image. To prevent these limitations, this study directly generates the optimal image pair via the Stokes vector. These images are then transformed into the frequency domain, and the global distribution of the degree of polarization of backscattered light is obtained using low-pass filtering. Recovery of the clear scene requires neither relying on background nor a search for the brightest and darkest images, significantly enhancing the real-time characteristics of the imaging process. Because of this, imaging of moving targets comes true. Additionally, experimental results at continuously varying distances verify the effectiveness of the proposed method for targets with different polarization properties. Especially, the imaging distance can be increased by 30% compared to the conventional active polarization imaging model at the same level of contrast.</p></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"169 ","pages":"Article 107721"},"PeriodicalIF":3.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816623002506","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Polarization imaging has excellent potential for use in underwater application scenarios due to efficient elimination of backscattered light. In most studies, two images that contain the maximum and minimum visible backscatter are obtained by finding the brightest and darkest moments during the rotation of the polarizer. In addition, the background region must be included in the image. To prevent these limitations, this study directly generates the optimal image pair via the Stokes vector. These images are then transformed into the frequency domain, and the global distribution of the degree of polarization of backscattered light is obtained using low-pass filtering. Recovery of the clear scene requires neither relying on background nor a search for the brightest and darkest images, significantly enhancing the real-time characteristics of the imaging process. Because of this, imaging of moving targets comes true. Additionally, experimental results at continuously varying distances verify the effectiveness of the proposed method for targets with different polarization properties. Especially, the imaging distance can be increased by 30% compared to the conventional active polarization imaging model at the same level of contrast.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques