{"title":"Surface Finish Analysis of Gradient Voltage Electrochemical Polishing of 316L Stainless Steel Parts Forming by Laser Powder Bed Fusion.","authors":"Wenzheng Wu, Jiaqi Wang, Qingping Liu, Xuechao Li, Yiming Zhou, Aodu Zheng, Luquan Ren, Guiwei Li","doi":"10.1089/3dp.2022.0275","DOIUrl":null,"url":null,"abstract":"<p><p>Laser powder bed fusion (LPBF) of complex-structure 316L stainless steel (316L ss) parts has a wide application prospects in aerospace, biomedical, and defense industry fields. However, the surface roughness (Ra) of the LPBF sample is unsatisfactory due to the process characteristics of layer-by-layer selective melting and cumulative forming, which limits its applications in the engineering field. Herein, a gradient voltage electrochemical polishing strategy is proposed based on the characteristics of electrochemical polishing technology, which can polish complex structures. The mechanisms of polishing process parameters and polishing strategy on the surface finish of LPBF parts are investigated. The gradient voltage polishing strategy is extended to complex structures, and the Ra of the inner surfaces of square and round tubes are successfully reduced to about 1 μm. The gradient electrochemical polishing process for surface finish post-treatment of LPBF parts can broaden the engineering applications of complex-structure metal parts.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"e801-e811"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Laser powder bed fusion (LPBF) of complex-structure 316L stainless steel (316L ss) parts has a wide application prospects in aerospace, biomedical, and defense industry fields. However, the surface roughness (Ra) of the LPBF sample is unsatisfactory due to the process characteristics of layer-by-layer selective melting and cumulative forming, which limits its applications in the engineering field. Herein, a gradient voltage electrochemical polishing strategy is proposed based on the characteristics of electrochemical polishing technology, which can polish complex structures. The mechanisms of polishing process parameters and polishing strategy on the surface finish of LPBF parts are investigated. The gradient voltage polishing strategy is extended to complex structures, and the Ra of the inner surfaces of square and round tubes are successfully reduced to about 1 μm. The gradient electrochemical polishing process for surface finish post-treatment of LPBF parts can broaden the engineering applications of complex-structure metal parts.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.