A method for increasing the supersolvus critical strain for recrystallization in single-crystal superalloys

IF 8.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sicong Lin, Kai Chen, Qiang Zeng, U. Ramamurty
{"title":"A method for increasing the supersolvus critical strain for recrystallization in single-crystal superalloys","authors":"Sicong Lin, Kai Chen, Qiang Zeng, U. Ramamurty","doi":"10.1080/21663831.2023.2253267","DOIUrl":null,"url":null,"abstract":"Recrystallization, possibly triggered during heat treatments by plastic strains of only 1–2%, is highly deleterious to Ni-based single-crystal superalloys. Herein, we successfully recover plastic deformation and enhance the supersolvus critical strain for recrystallization by ramping the annealing temperature slowly from 1100 °C to γ′-solvus point. This preempts recrystallization during the subsequent supersolvus solutionizing treatment. The proposed method is validated in single-crystals compressed to 5.9% plastic strain at room temperature. After supersolvus solutionizing, an almost dislocation-free single-crystal with uniformly distributed γ′-precipitates is obtained. The proposed method offers a practical means to bring down the overall expenses of single-crystal turbine blades. GRAPHICAL ABSTRACT IMPACT STATEMENT An optimized pre-solutionizing recovery heat treatment can elevate the critical plastic strain value for recrystallization in Ni-based superalloy single-crystals to 3 times higher than previously established.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"856 - 862"},"PeriodicalIF":8.6000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2253267","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recrystallization, possibly triggered during heat treatments by plastic strains of only 1–2%, is highly deleterious to Ni-based single-crystal superalloys. Herein, we successfully recover plastic deformation and enhance the supersolvus critical strain for recrystallization by ramping the annealing temperature slowly from 1100 °C to γ′-solvus point. This preempts recrystallization during the subsequent supersolvus solutionizing treatment. The proposed method is validated in single-crystals compressed to 5.9% plastic strain at room temperature. After supersolvus solutionizing, an almost dislocation-free single-crystal with uniformly distributed γ′-precipitates is obtained. The proposed method offers a practical means to bring down the overall expenses of single-crystal turbine blades. GRAPHICAL ABSTRACT IMPACT STATEMENT An optimized pre-solutionizing recovery heat treatment can elevate the critical plastic strain value for recrystallization in Ni-based superalloy single-crystals to 3 times higher than previously established.
提高单晶高温合金再结晶超溶质临界应变的方法
再结晶对镍基单晶高温合金非常有害,可能在热处理过程中仅由1-2%的塑性应变触发。通过将退火温度从1100℃缓慢升高到γ′溶点,我们成功地恢复了塑性变形,并提高了再结晶的超溶剂临界应变。这可以防止在随后的超溶剂固溶处理过程中再结晶。该方法在单晶压缩至5.9%塑性应变的室温条件下得到了验证。经超溶剂固溶后,得到了几乎无位错的单晶,其γ′析出相分布均匀。该方法为降低单晶涡轮叶片的总体成本提供了一种实用的方法。优化后的预固溶恢复热处理可将ni基高温合金单晶再结晶的临界塑性应变值提高到原来的3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Letters
Materials Research Letters Materials Science-General Materials Science
CiteScore
12.10
自引率
3.60%
发文量
98
审稿时长
3.3 months
期刊介绍: Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信