The Application of Affective Measures in Text-based Emotion Aware Recommender Systems

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Data Pub Date : 2023-05-04 DOI:10.48550/arXiv.2305.04796
John Kalung Leung, Igor Griva, W. Kennedy, J. Kinser, Sohyun Park, Seoyoon Lee
{"title":"The Application of Affective Measures in Text-based Emotion Aware Recommender Systems","authors":"John Kalung Leung, Igor Griva, W. Kennedy, J. Kinser, Sohyun Park, Seoyoon Lee","doi":"10.48550/arXiv.2305.04796","DOIUrl":null,"url":null,"abstract":"This paper presents an innovative approach to address the problems researchers face in Emotion Aware Recommender Systems (EARS): the difficulty and cumbersome collecting voluminously good quality emotion-tagged datasets and an effective way to protect users' emotional data privacy. Without enough good-quality emotion-tagged datasets, researchers cannot conduct repeatable affective computing research in EARS that generates personalized recommendations based on users' emotional preferences. Similarly, if we fail to fully protect users' emotional data privacy, users could resist engaging with EARS services. This paper introduced a method that detects affective features in subjective passages using the Generative Pre-trained Transformer Technology, forming the basis of the Affective Index and Affective Index Indicator (AII). Eliminate the need for users to build an affective feature detection mechanism. The paper advocates for a separation of responsibility approach where users protect their emotional profile data while EARS service providers refrain from retaining or storing it. Service providers can update users' Affective Indices in memory without saving their privacy data, providing Affective Aware recommendations without compromising user privacy. This paper offers a solution to the subjectivity and variability of emotions, data privacy concerns, and evaluation metrics and benchmarks, paving the way for future EARS research.","PeriodicalId":36824,"journal":{"name":"Data","volume":"1 1","pages":"590-597"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.04796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an innovative approach to address the problems researchers face in Emotion Aware Recommender Systems (EARS): the difficulty and cumbersome collecting voluminously good quality emotion-tagged datasets and an effective way to protect users' emotional data privacy. Without enough good-quality emotion-tagged datasets, researchers cannot conduct repeatable affective computing research in EARS that generates personalized recommendations based on users' emotional preferences. Similarly, if we fail to fully protect users' emotional data privacy, users could resist engaging with EARS services. This paper introduced a method that detects affective features in subjective passages using the Generative Pre-trained Transformer Technology, forming the basis of the Affective Index and Affective Index Indicator (AII). Eliminate the need for users to build an affective feature detection mechanism. The paper advocates for a separation of responsibility approach where users protect their emotional profile data while EARS service providers refrain from retaining or storing it. Service providers can update users' Affective Indices in memory without saving their privacy data, providing Affective Aware recommendations without compromising user privacy. This paper offers a solution to the subjectivity and variability of emotions, data privacy concerns, and evaluation metrics and benchmarks, paving the way for future EARS research.
情感度量在基于文本的情感感知推荐系统中的应用
本文提出了一种创新的方法来解决研究人员在情感感知推荐系统(EARS)中面临的问题:收集大量高质量的情感标记数据集的困难和繁琐,以及保护用户情感数据隐私的有效方法。如果没有足够高质量的情感标签数据集,研究人员就无法在基于用户情感偏好生成个性化推荐的EARS中进行可重复的情感计算研究。同样,如果我们不能充分保护用户的情感数据隐私,用户可能会拒绝使用EARS服务。本文介绍了一种利用生成预训练变换技术检测主观段落情感特征的方法,形成了情感指数和情感指数指标(AII)的基础。消除了用户构建情感特征检测机制的需要。该论文主张采用责任分离的方法,用户保护自己的情感档案数据,而EARS服务提供商则不保留或存储这些数据。服务提供商可以在不保存用户隐私数据的情况下更新用户的情感指数,在不损害用户隐私的情况下提供情感感知建议。本文为情绪的主观性和可变性、数据隐私问题以及评估指标和基准提供了一个解决方案,为未来的EARS研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信