Machine-Learning Quantum States in the NISQ Era

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER
G. Torlai, R. Melko
{"title":"Machine-Learning Quantum States in the NISQ Era","authors":"G. Torlai, R. Melko","doi":"10.1146/annurev-conmatphys-031119-050651","DOIUrl":null,"url":null,"abstract":"We review the development of generative modeling techniques in machine learning for the purpose of reconstructing real, noisy, many-qubit quantum states. Motivated by its interpretability and utility, we discuss in detail the theory of the restricted Boltzmann machine. We demonstrate its practical use for state reconstruction, starting from a classical thermal distribution of Ising spins, then moving systematically through increasingly complex pure and mixed quantum states. We review recent techniques in reconstruction of a cold atom wavefunction, intended for use on experimental noisy intermediate-scale quantum (NISQ) devices. Finally, we discuss the outlook for future experimental state reconstruction using machine learning in the NISQ era and beyond.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031119-050651","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-031119-050651","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 71

Abstract

We review the development of generative modeling techniques in machine learning for the purpose of reconstructing real, noisy, many-qubit quantum states. Motivated by its interpretability and utility, we discuss in detail the theory of the restricted Boltzmann machine. We demonstrate its practical use for state reconstruction, starting from a classical thermal distribution of Ising spins, then moving systematically through increasingly complex pure and mixed quantum states. We review recent techniques in reconstruction of a cold atom wavefunction, intended for use on experimental noisy intermediate-scale quantum (NISQ) devices. Finally, we discuss the outlook for future experimental state reconstruction using machine learning in the NISQ era and beyond.
NISQ时代的机器学习量子态
我们回顾了机器学习中生成建模技术的发展,以重建真实的、有噪声的、多量子比特的量子态。受其可解释性和实用性的启发,我们详细讨论了受限玻尔兹曼机的理论。我们展示了它在状态重建中的实际应用,从伊辛自旋的经典热分布开始,然后系统地穿过越来越复杂的纯量子态和混合量子态。我们回顾了最近重建冷原子波函数的技术,该技术旨在用于实验噪声中尺度量子(NISQ)器件。最后,我们讨论了在NISQ时代及以后使用机器学习进行实验状态重建的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信