Multiple Tanks Technique: Application to silicon-based radio-frequency and millimeter-wave integrated circuits

IF 2.3 Q3 NANOSCIENCE & NANOTECHNOLOGY
Kaixue Ma, Mingyun Liu, Zonglin Ma, K. Seng
{"title":"Multiple Tanks Technique: Application to silicon-based radio-frequency and millimeter-wave integrated circuits","authors":"Kaixue Ma, Mingyun Liu, Zonglin Ma, K. Seng","doi":"10.1109/mnano.2022.3160773","DOIUrl":null,"url":null,"abstract":"Radio-frequency (RF) integrated circuits (ICs) and millimeter-wave (mm-wave) ICs play crucial roles in modern wireless communication systems in laptops, smart phones, tablets, and so on. Silicon-based processes that have low cost and high integrity prompt the wide adoption of RF/mm-wave ICs in consumer electronics. However, the high substrate and metal losses of commercial silicon are considered inherent drawbacks, especially for RFIC designs with low-resistivity silicon of ∼10 Ω/square. We propose a multiple tanks topology to overcome this issue. The topology utilizes coupled multiple coils as a transformer to improve the equivalent quality factor (Q factor) of the tanks. Different applications if ICs, such as voltage-controlled oscillators (VCOs), dividers, power amplifiers (PAs), switches, and other circuits with frequencies up to 300 GHz, verify that by using this technique, dedicated RF/mm-wave IC performance can be significantly improved. Moreover, a 60-GHz transceiver system-on-chip (SOC) based on this technique is verified. This article presents the proposed method and implementation, from the fundamental concept and analysis to IC and system verification.","PeriodicalId":44724,"journal":{"name":"IEEE Nanotechnology Magazine","volume":"16 1","pages":"42-60"},"PeriodicalIF":2.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nanotechnology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mnano.2022.3160773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Radio-frequency (RF) integrated circuits (ICs) and millimeter-wave (mm-wave) ICs play crucial roles in modern wireless communication systems in laptops, smart phones, tablets, and so on. Silicon-based processes that have low cost and high integrity prompt the wide adoption of RF/mm-wave ICs in consumer electronics. However, the high substrate and metal losses of commercial silicon are considered inherent drawbacks, especially for RFIC designs with low-resistivity silicon of ∼10 Ω/square. We propose a multiple tanks topology to overcome this issue. The topology utilizes coupled multiple coils as a transformer to improve the equivalent quality factor (Q factor) of the tanks. Different applications if ICs, such as voltage-controlled oscillators (VCOs), dividers, power amplifiers (PAs), switches, and other circuits with frequencies up to 300 GHz, verify that by using this technique, dedicated RF/mm-wave IC performance can be significantly improved. Moreover, a 60-GHz transceiver system-on-chip (SOC) based on this technique is verified. This article presents the proposed method and implementation, from the fundamental concept and analysis to IC and system verification.
多槽技术:在硅基射频和毫米波集成电路中的应用
射频(RF)集成电路(IC)和毫米波(mm波)IC在笔记本电脑、智能手机、平板电脑等现代无线通信系统中发挥着至关重要的作用。低成本和高完整性的硅基工艺促使RF/mm波IC在消费电子产品中被广泛采用。然而,商用硅的高衬底和金属损耗被认为是固有的缺点,尤其是对于具有~10的低电阻率硅的RFIC设计Ω/广场我们提出了一种多储罐拓扑结构来克服这个问题。该拓扑结构利用耦合的多个线圈作为变压器来提高储罐的等效质量因子(Q因子)。如果IC(如压控振荡器(VCO)、分频器、功率放大器(PA)、开关和其他频率高达300GHz的电路)在不同的应用中验证了通过使用该技术,专用RF/mm波IC的性能可以显著提高。此外,还验证了基于该技术的60GHz片上收发器系统(SOC)。本文介绍了所提出的方法和实现,从基本概念和分析到IC和系统验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Nanotechnology Magazine
IEEE Nanotechnology Magazine NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.90
自引率
6.20%
发文量
46
期刊介绍: IEEE Nanotechnology Magazine publishes peer-reviewed articles that present emerging trends and practices in industrial electronics product research and development, key insights, and tutorial surveys in the field of interest to the member societies of the IEEE Nanotechnology Council. IEEE Nanotechnology Magazine will be limited to the scope of the Nanotechnology Council, which supports the theory, design, and development of nanotechnology and its scientific, engineering, and industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信