LSTM based artificial intelligence predictive maintenance technique for availability rate and OEE improvement in a TPM implementing plant through Industry 4.0 transformation
{"title":"LSTM based artificial intelligence predictive maintenance technique for availability rate and OEE improvement in a TPM implementing plant through Industry 4.0 transformation","authors":"Roosefert Mohan, J. Roselyn, R. Uthra","doi":"10.1108/jqme-07-2022-0041","DOIUrl":null,"url":null,"abstract":"PurposeThe artificial intelligence (AI) based total productive maintenance (TPM) condition based maintenance (CBM) approach through Industry 4.0 transformation can well predict the breakdown in advance to eliminate breakdown.Design/methodology/approachMeeting the customer requirement as per the delivery schedule with the existing resources are always a big challenge in industries. Any catastrophic breakdown in the equipment leads to increase in production loss, damage to machines, repair cost, time and affects delivery. If these breakdowns are predicted in advance, the breakdown can be addressed before its occurrence and the demand supply chain can be met. TPM is one of the essential operational excellence tool used in industries to utilize the existing resources of a plant in a optimal way. The conventional time based maintenance (TBM) and CBM approach of TPM in Industry 3.0 is time consuming and not accurate enough to achieve zero down time.FindingsThe proposed AI and IIoT based TPM is achieved in a digitalized data oriented platform to monitor and control the health status of the machine which may reduce the catastrophic breakdown by 95% and also improves the quality rate and machine performance rate. Based on the identified key signature parameters related to major breakdown are measured using the sensors, digitalised by programmable logic controller (PLC) and monitored by supervisory control and data acquisition (SCADA) and predicted in server or cloud.Originality/valueLong short term memory based deep learning network was developed as a regression forecasting model to predict the remaining useful life RUL of the part or assembly and based on the predictions, corrective action has been implemented before the occurrence of breakdown. The reliability and consistency of the proposed approach are validated and horizontally deployed in similar machines to achieve zero downtime.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality in Maintenance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jqme-07-2022-0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeThe artificial intelligence (AI) based total productive maintenance (TPM) condition based maintenance (CBM) approach through Industry 4.0 transformation can well predict the breakdown in advance to eliminate breakdown.Design/methodology/approachMeeting the customer requirement as per the delivery schedule with the existing resources are always a big challenge in industries. Any catastrophic breakdown in the equipment leads to increase in production loss, damage to machines, repair cost, time and affects delivery. If these breakdowns are predicted in advance, the breakdown can be addressed before its occurrence and the demand supply chain can be met. TPM is one of the essential operational excellence tool used in industries to utilize the existing resources of a plant in a optimal way. The conventional time based maintenance (TBM) and CBM approach of TPM in Industry 3.0 is time consuming and not accurate enough to achieve zero down time.FindingsThe proposed AI and IIoT based TPM is achieved in a digitalized data oriented platform to monitor and control the health status of the machine which may reduce the catastrophic breakdown by 95% and also improves the quality rate and machine performance rate. Based on the identified key signature parameters related to major breakdown are measured using the sensors, digitalised by programmable logic controller (PLC) and monitored by supervisory control and data acquisition (SCADA) and predicted in server or cloud.Originality/valueLong short term memory based deep learning network was developed as a regression forecasting model to predict the remaining useful life RUL of the part or assembly and based on the predictions, corrective action has been implemented before the occurrence of breakdown. The reliability and consistency of the proposed approach are validated and horizontally deployed in similar machines to achieve zero downtime.
期刊介绍:
This exciting journal looks at maintenance engineering from a positive standpoint, and clarifies its recently elevatedstatus as a highly technical, scientific, and complex field. Typical areas examined include: ■Budget and control ■Equipment management ■Maintenance information systems ■Process capability and maintenance ■Process monitoring techniques ■Reliability-based maintenance ■Replacement and life cycle costs ■TQM and maintenance