{"title":"Discovery of small-molecule inhibitors for the protein-protein interactions involving ATG5.","authors":"Honggang Xiang, Renxiao Wang","doi":"10.1080/27694127.2023.2215617","DOIUrl":null,"url":null,"abstract":"<p><p>The autophagy-related 12 (ATG12)-autophagy-related 5 (ATG5)-autophagy-related 16-like 1 (ATG16L1) ternary complex forms a dimer that facilitates the translocation of autophagy-related 8 (ATG8) proteins from autophagy-related 3 (ATG3) to phosphatidylethanolamine (PE). This event is fundamental for cargo sequestration and autophagy progression. Thus, one possible strategy for inhibiting autophagy is to disrupt the critical ATG5-ATG16L1 interaction during this process. So far very few known specific autophagy modulators can block autophagy effectively. We recently discovered a small-molecule compound, T1742, which is able to block the ATG5-ATG16L1 and ATG5-TECAIR interactions <i>in vitro</i> at the low-micromolar range (IC<sub>50</sub> = 1~2 μM). Flow cytometry assay and western blot experiments indicated that T1742 can also effectively inhibit autophagy in living cells in a dose-dependent manner. To the best of our knowledge, T1742 represents the first small-molecule autophagy inhibitor that disrupts the protein-protein interactions involving ATG5. Such compounds may serve as a new chemical tool for deciphering the mechanism of autophagy or a potential candidate for therapeutic application.</p>","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":" ","pages":"2215617"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/27694127.2023.2215617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The autophagy-related 12 (ATG12)-autophagy-related 5 (ATG5)-autophagy-related 16-like 1 (ATG16L1) ternary complex forms a dimer that facilitates the translocation of autophagy-related 8 (ATG8) proteins from autophagy-related 3 (ATG3) to phosphatidylethanolamine (PE). This event is fundamental for cargo sequestration and autophagy progression. Thus, one possible strategy for inhibiting autophagy is to disrupt the critical ATG5-ATG16L1 interaction during this process. So far very few known specific autophagy modulators can block autophagy effectively. We recently discovered a small-molecule compound, T1742, which is able to block the ATG5-ATG16L1 and ATG5-TECAIR interactions in vitro at the low-micromolar range (IC50 = 1~2 μM). Flow cytometry assay and western blot experiments indicated that T1742 can also effectively inhibit autophagy in living cells in a dose-dependent manner. To the best of our knowledge, T1742 represents the first small-molecule autophagy inhibitor that disrupts the protein-protein interactions involving ATG5. Such compounds may serve as a new chemical tool for deciphering the mechanism of autophagy or a potential candidate for therapeutic application.