{"title":"Load-carrying capacity of welded K-type joints inside floor truss systems","authors":"P. Saremi, W. Lu, J. Puttonen, D. Pada, J. Kesti","doi":"10.23998/RM.74444","DOIUrl":null,"url":null,"abstract":"The load-carrying capacity of a K-type joint inside a floor truss is studied both experimentally and numerically. The joint tested is a scaled-down, isolated joint. The tubular braces, plate chord, and division plate are made of SSAB Domex steel. Comparison of load displacement curves received by finite element analyses with curves obtained from tests confirms that numerical models describe joint behaviour reasonable. The paper demonstrates that joints with high load-bearing capacity can be investigated experimentally by scaling the dimensions of the joint down when testing devices can affect the required capacity of the joint. The results presented can also be used for optimizing failure mechanism of similar joints in practice.","PeriodicalId":52331,"journal":{"name":"Rakenteiden Mekaniikka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rakenteiden Mekaniikka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23998/RM.74444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The load-carrying capacity of a K-type joint inside a floor truss is studied both experimentally and numerically. The joint tested is a scaled-down, isolated joint. The tubular braces, plate chord, and division plate are made of SSAB Domex steel. Comparison of load displacement curves received by finite element analyses with curves obtained from tests confirms that numerical models describe joint behaviour reasonable. The paper demonstrates that joints with high load-bearing capacity can be investigated experimentally by scaling the dimensions of the joint down when testing devices can affect the required capacity of the joint. The results presented can also be used for optimizing failure mechanism of similar joints in practice.