Thermodynamic factor and vacuum crystallization

IF 1.3 Q4 FOOD SCIENCE & TECHNOLOGY
E. Semenov, A. Slavyanskiy, D. Mitroshina, N. Lebedeva
{"title":"Thermodynamic factor and vacuum crystallization","authors":"E. Semenov, A. Slavyanskiy, D. Mitroshina, N. Lebedeva","doi":"10.21603/2308-4057-2022-2-542","DOIUrl":null,"url":null,"abstract":"Sucrose crystallization depends on various thermal phenomena, which makes them an important scientific issue for the sugar industry. However, the rationale and theory of sucrose crystallization still remain understudied. Among the least described problems is the effect of time and temperature on the condensation rate of sucrose molecules on crystallization nuclei in a supersaturated sugar solution. This article introduces a physical and mathematical heat transfer model for this process, as well as its numerical analysis. \nThe research featured a supersaturated sugar solution during sucrose crystallization and focused on the condensation of sucrose molecules on crystallization nuclei. The study involved the method of physical and mathematical modeling of molecular mass transfer, which was subjected to a numerical analysis. \nWhile crystallizing in a vacuum boiling pan, a metastable solution went through an exothermal reaction. In a supersaturated solution, this reaction triggered a transient crystallization of solid phase molecules and a thermal release from the crystallization nuclei into the liquid phase. This exogenous heat reached 39.24 kJ/kg and affected the mass transfer kinetics. As a result, the temperature rose sharply from 80 to 86 °C. \nThe research revealed the effect of temperature and time on the condensation of solids dissolved during crystalline sugar production. The model involved the endogenous heat factor. The numerical experiment proved that the model reflected the actual process of sucrose crystallization. The obtained correlations can solve a number of problems that the modern sugar industry faces.","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods and Raw Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21603/2308-4057-2022-2-542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Sucrose crystallization depends on various thermal phenomena, which makes them an important scientific issue for the sugar industry. However, the rationale and theory of sucrose crystallization still remain understudied. Among the least described problems is the effect of time and temperature on the condensation rate of sucrose molecules on crystallization nuclei in a supersaturated sugar solution. This article introduces a physical and mathematical heat transfer model for this process, as well as its numerical analysis. The research featured a supersaturated sugar solution during sucrose crystallization and focused on the condensation of sucrose molecules on crystallization nuclei. The study involved the method of physical and mathematical modeling of molecular mass transfer, which was subjected to a numerical analysis. While crystallizing in a vacuum boiling pan, a metastable solution went through an exothermal reaction. In a supersaturated solution, this reaction triggered a transient crystallization of solid phase molecules and a thermal release from the crystallization nuclei into the liquid phase. This exogenous heat reached 39.24 kJ/kg and affected the mass transfer kinetics. As a result, the temperature rose sharply from 80 to 86 °C. The research revealed the effect of temperature and time on the condensation of solids dissolved during crystalline sugar production. The model involved the endogenous heat factor. The numerical experiment proved that the model reflected the actual process of sucrose crystallization. The obtained correlations can solve a number of problems that the modern sugar industry faces.
热力学因素与真空结晶
蔗糖结晶依赖于各种热现象,这使其成为糖业的一个重要科学问题。然而,蔗糖结晶的基本原理和理论仍然研究不足。在描述最少的问题中,时间和温度对过饱和糖溶液中蔗糖分子在结晶核上的缩合速率的影响。本文介绍了该过程的物理和数学传热模型,并对其进行了数值分析。该研究以蔗糖结晶过程中的过饱和糖溶液为特征,重点研究了蔗糖分子在结晶核上的缩合。该研究涉及分子传质的物理和数学建模方法,并对其进行了数值分析。在真空沸腾锅中结晶时,亚稳溶液发生放热反应。在过饱和溶液中,该反应引发固相分子的瞬态结晶,并从结晶核向液相中释放热量。该外源热量达到39.24kJ/kg,影响了传质动力学。结果,气温从80°C急剧上升到86°C。研究揭示了温度和时间对结晶糖生产过程中溶解固体凝结的影响。该模型涉及内生热因子。数值实验证明,该模型反映了蔗糖结晶的实际过程。所获得的相关性可以解决现代糖业面临的许多问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foods and Raw Materials
Foods and Raw Materials FOOD SCIENCE & TECHNOLOGY-
CiteScore
3.70
自引率
20.00%
发文量
39
审稿时长
24 weeks
期刊介绍: The journal «Foods and Raw Materials» is published from 2013. It is published in the English and German languages with periodicity of two volumes a year. The main concern of the journal «Foods and Raw Materials» is informing the scientific community on the works by the researchers from Russia and the CIS, strengthening the world position of the science they represent, showing the results of perspective scientific researches in the food industry and related branches. The main tasks of the Journal consist the publication of scientific research results and theoretical and experimental studies, carried out in the Russian and foreign organizations, as well as on the authors'' personal initiative; bringing together different categories of researchers, university and scientific intelligentsia; to create and maintain a common space of scientific communication, bridging the gap between the publications of regional, federal and international level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信