On wsq-primary ideals

IF 0.4 4区 数学 Q4 MATHEMATICS
Emel Aslankarayiğit Uğurlu, E. M. Bouba, Ünsal Tekir, Suat Koç
{"title":"On wsq-primary ideals","authors":"Emel Aslankarayiğit Uğurlu, E. M. Bouba, Ünsal Tekir, Suat Koç","doi":"10.21136/CMJ.2023.0259-21","DOIUrl":null,"url":null,"abstract":"We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let R be a commutative ring with a nonzero identity and Q a proper ideal of R. The proper ideal Q is said to be a weakly strongly quasi-primary ideal if whenever 0 ≠ ab ∈ Q for some a, b ∈ R, then a2 ∈ Q or b∈Q\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$b \\in \\sqrt Q $$\\end{document}. Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional rings over which every proper ideal is wsq-primary. Finally, we study finite union of wsq-primary ideals.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"415 - 429"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0259-21","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let R be a commutative ring with a nonzero identity and Q a proper ideal of R. The proper ideal Q is said to be a weakly strongly quasi-primary ideal if whenever 0 ≠ ab ∈ Q for some a, b ∈ R, then a2 ∈ Q or b∈Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \in \sqrt Q $$\end{document}. Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional rings over which every proper ideal is wsq-primary. Finally, we study finite union of wsq-primary ideals.
关于wsq初理想
我们在交换环中引入弱强拟初等(简称wsq初等)理想。设R是一个具有非零恒等式的交换环,Q是R的适当理想。适当理想Q被称为弱强拟初理想,如果对于某个a,b∈R,则a2∈Q或b∈Q\documentclass[12pt]{minimum}\usepackage{amsmath}\userpackage{wasysym}\use package{amsfonts}\usapackage{amssymb}\ usepackage{amsbsy}\ use package{mathrsfs}\ usapackage{upgeek}\setlength{\doddsidemargin}{-69pt}\begin{document}$b\in\sqrt Q$\end{document}。给出了wsq初理想的许多例子和性质。此外,我们还刻画了非局部Noetherian-von Neumann正则环、域、每个适当理想是wsq初等的非局部环,以及每个适当理想都是wsq初级的零维环。最后,我们研究了wsq初理想的有限并集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信