Molybdenum disulfide/carbon multilayer films achieve ultra‐low wear in vacuum

IF 1.6 4区 化学 Q4 CHEMISTRY, PHYSICAL
Zhiqiang Cheng, Xiaoli Wei, Kaixiong Gao, Chunyan Li
{"title":"Molybdenum disulfide/carbon multilayer films achieve ultra‐low wear in vacuum","authors":"Zhiqiang Cheng, Xiaoli Wei, Kaixiong Gao, Chunyan Li","doi":"10.1002/sia.7241","DOIUrl":null,"url":null,"abstract":"Although diamond‐like carbon (DLC) films are known for their low friction and wear properties in atmospheric environments, they commonly experience failure in vacuum environments. On the other hand, MoS2 exhibits a low friction coefficient under vacuum conditions, but its columnar structure limits its load‐bearing capacity and results in high wear rates. In this study, we prepared MoS2/DLC multilayer films using a high‐power impulse magnetron sputtering (HIPIMS) technique and examined the composition, bonding structure, mechanical properties, and frictional wear of the resulting films. The study findings revealed that the multilayer film exhibits a significantly low coefficient of friction (0.04), particularly in vacuum conditions (5 × 10−3 Pa). Remarkably, compared to the pure MoS2 film, the wear rate of the multilayer film is reduced by two orders of magnitude, wear rate as low as 3.6 × 10−9 mm3/Nm. Additionally, the DLC component enhances the hardness and reduces the wear rate of the multilayer film. Furthermore, the use of nanometer thickness (17 nm) allows for the incorporation of more MoS2 and DLC layers, which promotes the formation of graphene bands and further reduces the friction coefficient and wear rate. Our findings open new avenues for the application of MoS2 and DLC in vacuum environments.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"55 1","pages":"730 - 739"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7241","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although diamond‐like carbon (DLC) films are known for their low friction and wear properties in atmospheric environments, they commonly experience failure in vacuum environments. On the other hand, MoS2 exhibits a low friction coefficient under vacuum conditions, but its columnar structure limits its load‐bearing capacity and results in high wear rates. In this study, we prepared MoS2/DLC multilayer films using a high‐power impulse magnetron sputtering (HIPIMS) technique and examined the composition, bonding structure, mechanical properties, and frictional wear of the resulting films. The study findings revealed that the multilayer film exhibits a significantly low coefficient of friction (0.04), particularly in vacuum conditions (5 × 10−3 Pa). Remarkably, compared to the pure MoS2 film, the wear rate of the multilayer film is reduced by two orders of magnitude, wear rate as low as 3.6 × 10−9 mm3/Nm. Additionally, the DLC component enhances the hardness and reduces the wear rate of the multilayer film. Furthermore, the use of nanometer thickness (17 nm) allows for the incorporation of more MoS2 and DLC layers, which promotes the formation of graphene bands and further reduces the friction coefficient and wear rate. Our findings open new avenues for the application of MoS2 and DLC in vacuum environments.
二硫化钼/碳多层膜在真空中实现超低磨损
尽管类金刚石碳(DLC)薄膜在大气环境中以其低摩擦和磨损性能而闻名,但它们在真空环境中通常会发生故障。另一方面,MoS2在真空条件下表现出低摩擦系数,但其柱状结构限制了其承载能力,并导致高磨损率。在本研究中,我们使用高功率脉冲磁控溅射(HIPIMS)技术制备了MoS2/DLC多层膜,并检查了所得膜的组成、键合结构、机械性能和摩擦磨损。研究结果表明,多层膜表现出显著的低摩擦系数(0.04),特别是在真空条件下(5 × 10−3 Pa)。值得注意的是,与纯MoS2膜相比,多层膜的磨损率降低了两个数量级,磨损率低至3.6 × 10−9 mm3/Nm。此外,DLC组分提高了多层膜的硬度并降低了磨损率。此外,使用纳米厚度(17 nm)允许引入更多的MoS2和DLC层,这促进了石墨烯带的形成并进一步降低了摩擦系数和磨损率。我们的发现为MoS2和DLC在真空环境中的应用开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface and Interface Analysis
Surface and Interface Analysis 化学-物理化学
CiteScore
3.30
自引率
5.90%
发文量
130
审稿时长
4.4 months
期刊介绍: Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信