{"title":"In situ determination of magnesite solubility and carbon speciation in water and NaCl solutions under subduction zone conditions","authors":"Wan-Cai Li , Qinxia Wang","doi":"10.1016/j.sesci.2022.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>The dissolution behavior of carbonates in subduction zone fluids has not been well constrained. In this study we investigated the solubility of magnesite in pure water and NaCl solutions (with up to 19 wt% NaCl) in situ with a hydrothermal diamond anvil cell, and determined carbon speciation in the fluid by Raman spectroscopy. The solubility of magnesite in pure water falls in the range of 0.01–0.05 mol/kg at 0.7–2.4 GPa and 635–940 °C, enhanced strongly by temperature. Least squares fitting of experimental data leads to the following empirical expression for magnesite solubility in pure water: <span><math><mrow><msub><mi>C</mi><msub><mtext>MgCO</mtext><mn>3</mn></msub></msub><mo>=</mo><mrow><mo>(</mo><mn>964510</mn><mo>±</mo><mn>41362</mn><mo>)</mo></mrow><mi>exp</mi><mrow><mo>(</mo><mfrac><mrow><mo>−</mo><mn>6953</mn><mo>±</mo><mn>690</mn></mrow><mi>T</mi></mfrac><mo>)</mo></mrow><mi>exp</mi><mrow><mo>[</mo><mrow><mfrac><mrow><mn>0.0200</mn><mo>±</mo><mn>0.0098</mn></mrow><mi>T</mi></mfrac><mrow><mo>(</mo><mi>P</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mo>]</mo></mrow></mrow></math></span> where <span><math><mrow><msub><mi>C</mi><msub><mtext>MgCO</mtext><mn>3</mn></msub></msub></mrow></math></span> is given in μg/g, <em>T</em> is the temperature in K, and <em>P</em> is the pressure in bar, respectively. The solubility of MgCO<sub>3</sub> is about an order of magnitude lower than that of CaCO<sub>3</sub> at 0.7–2.4 GPa, 640–940 °C. The solubility enhancement factor by NaCl (<em>m</em>/<em>m°</em> with <em>m</em> and <em>m°</em> being magnesite solubility in NaCl solution and water, respectively) presents as a parabolic trend with the mole fraction of NaCl in the range of 0–0.07, with a maximum amplification of 5.2 at <em>X</em><sub>NaCl</sub> = 0.035, which is different from the continuously increase of solubility with salinity increasing at high salinity conditions in previous studies and suggests the dissolution reaction of magnesite in dilute NaCl solution is different. Despite slight contamination of CH<sub>4</sub> formed by the reaction of the diamond anvils, we were able to identify CO<sub>3</sub><sup>2−</sup> and HCO<sub>3</sub><sup>-</sup> to be the aqueous carbon species, HCO<sub>3</sub><sup>-</sup> was predominant over CO<sub>3</sub><sup>2−</sup> in the range of 200–800 °C and 1.9–3.8 GPa and its proportion was affected by temperature, but not affected by pressure at 400–600 °C. Our experimental data suggest that in the absence of melting, only a small amount of magnesite can be mobilized by the slab-released fluid at subarc depths.</p></div>","PeriodicalId":54172,"journal":{"name":"Solid Earth Sciences","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451912X22000204/pdfft?md5=508fb508f728858e9c86795d6e307b50&pid=1-s2.0-S2451912X22000204-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451912X22000204","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The dissolution behavior of carbonates in subduction zone fluids has not been well constrained. In this study we investigated the solubility of magnesite in pure water and NaCl solutions (with up to 19 wt% NaCl) in situ with a hydrothermal diamond anvil cell, and determined carbon speciation in the fluid by Raman spectroscopy. The solubility of magnesite in pure water falls in the range of 0.01–0.05 mol/kg at 0.7–2.4 GPa and 635–940 °C, enhanced strongly by temperature. Least squares fitting of experimental data leads to the following empirical expression for magnesite solubility in pure water: where is given in μg/g, T is the temperature in K, and P is the pressure in bar, respectively. The solubility of MgCO3 is about an order of magnitude lower than that of CaCO3 at 0.7–2.4 GPa, 640–940 °C. The solubility enhancement factor by NaCl (m/m° with m and m° being magnesite solubility in NaCl solution and water, respectively) presents as a parabolic trend with the mole fraction of NaCl in the range of 0–0.07, with a maximum amplification of 5.2 at XNaCl = 0.035, which is different from the continuously increase of solubility with salinity increasing at high salinity conditions in previous studies and suggests the dissolution reaction of magnesite in dilute NaCl solution is different. Despite slight contamination of CH4 formed by the reaction of the diamond anvils, we were able to identify CO32− and HCO3- to be the aqueous carbon species, HCO3- was predominant over CO32− in the range of 200–800 °C and 1.9–3.8 GPa and its proportion was affected by temperature, but not affected by pressure at 400–600 °C. Our experimental data suggest that in the absence of melting, only a small amount of magnesite can be mobilized by the slab-released fluid at subarc depths.