{"title":"A neurocomputational model for the processing of conflicting information in context-dependent decision tasks","authors":"Francisco M. López, Andrés Pomi","doi":"10.1007/s10867-021-09601-9","DOIUrl":null,"url":null,"abstract":"<div><p>Context-dependent computation is a relevant characteristic of neural systems, endowing them with the capacity of adaptively modifying behavioral responses and flexibly discriminating between relevant and irrelevant information in a stimulus. This ability is particularly highlighted in solving conflicting tasks. A long-standing problem in computational neuroscience, flexible routing of information, is also closely linked with the ability to perform context-dependent associations. Here we present an extension of a context-dependent associative memory model to achieve context-dependent decision-making in the presence of conflicting and noisy multi-attribute stimuli. In these models, the input vectors are multiplied by context vectors via the Kronecker tensor product. To outfit the model with a noisy dynamic, we embedded the context-dependent associative memory in a leaky competing accumulator model, and, finally, we proved the power of the model in the reproduction of a behavioral experiment with monkeys in a context-dependent conflicting decision-making task. At the end, we discuss the neural feasibility of the tensor product and made the suggestive observation that the capacities of tensor context models are surprisingly in alignment with the more recent experimental findings about functional flexibility at different levels of brain organization.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-021-09601-9.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-021-09601-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
Context-dependent computation is a relevant characteristic of neural systems, endowing them with the capacity of adaptively modifying behavioral responses and flexibly discriminating between relevant and irrelevant information in a stimulus. This ability is particularly highlighted in solving conflicting tasks. A long-standing problem in computational neuroscience, flexible routing of information, is also closely linked with the ability to perform context-dependent associations. Here we present an extension of a context-dependent associative memory model to achieve context-dependent decision-making in the presence of conflicting and noisy multi-attribute stimuli. In these models, the input vectors are multiplied by context vectors via the Kronecker tensor product. To outfit the model with a noisy dynamic, we embedded the context-dependent associative memory in a leaky competing accumulator model, and, finally, we proved the power of the model in the reproduction of a behavioral experiment with monkeys in a context-dependent conflicting decision-making task. At the end, we discuss the neural feasibility of the tensor product and made the suggestive observation that the capacities of tensor context models are surprisingly in alignment with the more recent experimental findings about functional flexibility at different levels of brain organization.
期刊介绍:
Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials.
The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.