Hybrid EEG-fNIRS brain-computer interface based on the non-linear features extraction and stacking ensemble learning

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Asmaa Maher , Saeed Mian Qaisar , N. Salankar , Feng Jiang , Ryszard Tadeusiewicz , Paweł Pławiak , Ahmed A. Abd El-Latif , Mohamed Hammad
{"title":"Hybrid EEG-fNIRS brain-computer interface based on the non-linear features extraction and stacking ensemble learning","authors":"Asmaa Maher ,&nbsp;Saeed Mian Qaisar ,&nbsp;N. Salankar ,&nbsp;Feng Jiang ,&nbsp;Ryszard Tadeusiewicz ,&nbsp;Paweł Pławiak ,&nbsp;Ahmed A. Abd El-Latif ,&nbsp;Mohamed Hammad","doi":"10.1016/j.bbe.2023.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>The Brain-computer interface (BCI) is used to enhance the human capabilities. The hybrid-BCI (hBCI) is a novel concept for subtly hybridizing multiple monitoring schemes to maximize the advantages of each while minimizing the drawbacks of individual methods. Recently, researchers have started focusing on the Electroencephalogram (EEG) and “Functional Near-Infrared Spectroscopy” (fNIRS) based hBCI. The main reason is due to the development of artificial intelligence (AI) algorithms such as machine learning approaches to better process the brain signals. An original EEG-fNIRS based hBCI system is devised by using the non-linear features mining and ensemble learning (EL) approach. We first diminish the noise and artifacts from the input EEG-fNIRS signals using digital filtering. After that, we use the signals for non-linear features mining. These features are “Fractal Dimension” (FD), “Higher Order Spectra” (HOS), “Recurrence Quantification Analysis” (RQA) features, and Entropy features. Onward, the Genetic Algorithm (GA) is employed for Features Selection (FS). Lastly, we employ a novel Machine Learning (ML) technique using several algorithms namely, the “Naïve Bayes” (NB), “Support Vector Machine” (SVM), “Random Forest” (RF), and “K-Nearest Neighbor” (KNN). These classifiers are combined as an ensemble for recognizing the intended brain activities. The applicability is tested by using a publicly available multi-subject and multiclass EEG-fNIRS dataset. Our method has reached the highest accuracy, F1-score, and sensitivity of 95.48%, 97.67% and 97.83% respectively.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521623000256","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 4

Abstract

The Brain-computer interface (BCI) is used to enhance the human capabilities. The hybrid-BCI (hBCI) is a novel concept for subtly hybridizing multiple monitoring schemes to maximize the advantages of each while minimizing the drawbacks of individual methods. Recently, researchers have started focusing on the Electroencephalogram (EEG) and “Functional Near-Infrared Spectroscopy” (fNIRS) based hBCI. The main reason is due to the development of artificial intelligence (AI) algorithms such as machine learning approaches to better process the brain signals. An original EEG-fNIRS based hBCI system is devised by using the non-linear features mining and ensemble learning (EL) approach. We first diminish the noise and artifacts from the input EEG-fNIRS signals using digital filtering. After that, we use the signals for non-linear features mining. These features are “Fractal Dimension” (FD), “Higher Order Spectra” (HOS), “Recurrence Quantification Analysis” (RQA) features, and Entropy features. Onward, the Genetic Algorithm (GA) is employed for Features Selection (FS). Lastly, we employ a novel Machine Learning (ML) technique using several algorithms namely, the “Naïve Bayes” (NB), “Support Vector Machine” (SVM), “Random Forest” (RF), and “K-Nearest Neighbor” (KNN). These classifiers are combined as an ensemble for recognizing the intended brain activities. The applicability is tested by using a publicly available multi-subject and multiclass EEG-fNIRS dataset. Our method has reached the highest accuracy, F1-score, and sensitivity of 95.48%, 97.67% and 97.83% respectively.

基于非线性特征提取和叠加集成学习的脑机脑电混合接口
脑机接口(BCI)是用来提高人的能力。混合bci (hBCI)是一种新颖的概念,它巧妙地混合了多种监测方案,以最大限度地发挥每种方法的优势,同时最大限度地减少每种方法的缺点。最近,研究人员开始关注基于脑电图(EEG)和“功能性近红外光谱”(fNIRS)的hBCI。主要原因是机器学习等人工智能(AI)算法的发展,以更好地处理大脑信号。采用非线性特征挖掘和集成学习(EL)方法,设计了一种新颖的基于EEG-fNIRS的hBCI系统。我们首先使用数字滤波来减小输入EEG-fNIRS信号中的噪声和伪影。然后,我们使用这些信号进行非线性特征挖掘。这些特征是“分形维数”(FD)、“高阶谱”(HOS)、“递归量化分析”(RQA)特征和熵特征。随后,遗传算法(GA)被用于特征选择(FS)。最后,我们采用了一种新的机器学习(ML)技术,使用了几种算法,即“Naïve贝叶斯”(NB)、“支持向量机”(SVM)、“随机森林”(RF)和“k -最近邻”(KNN)。这些分类器组合成一个整体来识别预期的大脑活动。通过使用公开的多主题和多类别EEG-fNIRS数据集来测试其适用性。该方法准确率最高,f1评分最高,灵敏度最高,分别为95.48%、97.67%和97.83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信