Invariant measures and statistical solutions for a nonautonomous nonlocal Swift–Hohenberg equation

Pub Date : 2022-01-02 DOI:10.1080/14689367.2021.2020215
Xiujuan Wang, Jintao Wang, Chunqiu Li
{"title":"Invariant measures and statistical solutions for a nonautonomous nonlocal Swift–Hohenberg equation","authors":"Xiujuan Wang, Jintao Wang, Chunqiu Li","doi":"10.1080/14689367.2021.2020215","DOIUrl":null,"url":null,"abstract":"This paper investigates a two-dimensional nonautonomous nonlocal Swift–Hohenberg equation with two kinds of kernels and studies the existence of invariant measures and statistical solutions, which are important research objects in the area of turbulence for fluid systems. The existence of weak solutions guarantees a norm-to-weak continuous process associated with the nonautonomous equation. We first prove the existence of the pullback attractor for the process via the pullback flattening. Then the unique existence of invariant measures is obtained by appropriate construction, so that the invariant measure is supported by this pullback attractor. This invariant measure is turned out to be exactly a statistical solution of the original nonlocal Swift–Hohenberg equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2021.2020215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper investigates a two-dimensional nonautonomous nonlocal Swift–Hohenberg equation with two kinds of kernels and studies the existence of invariant measures and statistical solutions, which are important research objects in the area of turbulence for fluid systems. The existence of weak solutions guarantees a norm-to-weak continuous process associated with the nonautonomous equation. We first prove the existence of the pullback attractor for the process via the pullback flattening. Then the unique existence of invariant measures is obtained by appropriate construction, so that the invariant measure is supported by this pullback attractor. This invariant measure is turned out to be exactly a statistical solution of the original nonlocal Swift–Hohenberg equation.
分享
查看原文
非自治非局部Swift–Hohenberg方程的不变测度和统计解
本文研究了一类具有两种核的二维非自治非局部Swift-Hohenberg方程,并研究了流体系统湍流领域中重要研究对象不变测度和统计解的存在性。弱解的存在性保证了与非自治方程相关的一个规范到弱连续过程。我们首先通过拉回平坦化证明了该过程的拉回吸引子的存在性。然后通过适当的构造得到不变测度的唯一存在性,使得不变测度得到该回拉吸引子的支持。该不变测度正是原始非局部斯威夫特-霍恩伯格方程的统计解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信