Gram-scale production of in-situ generated iron carbide nanoparticles encapsulated via nitrogen and phosphorous co-doped bamboo-like carbon nanotubes for oxygen evolution reaction

Q1 Materials Science
Asad Ali , Fengxing Liang , Huiyan Feng , Mei Tang , Syed Jalil Shah , Fawad Ahmad , Xiaoyan Ji , Pei Kang Shen , Jinliang Zhu
{"title":"Gram-scale production of in-situ generated iron carbide nanoparticles encapsulated via nitrogen and phosphorous co-doped bamboo-like carbon nanotubes for oxygen evolution reaction","authors":"Asad Ali ,&nbsp;Fengxing Liang ,&nbsp;Huiyan Feng ,&nbsp;Mei Tang ,&nbsp;Syed Jalil Shah ,&nbsp;Fawad Ahmad ,&nbsp;Xiaoyan Ji ,&nbsp;Pei Kang Shen ,&nbsp;Jinliang Zhu","doi":"10.1016/j.mset.2023.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>Optimizing electrocatalytic activity and recognizing the most reactive sites for oxygen evolution reaction (OER) electrocatalysts are valuable to the order of renewable power. In this research article, we explored an innovative in-situ annealing technique for constructing iron carbide nanoparticles (Fe<sub>3</sub>C NPs) encapsulated via nitrogen and phosphorous doped bamboo-shape carbon nanotubes (NP-CNTs) for OER. Interestingly, the constructed Fe<sub>3</sub>C NPs@NP-CNT-800 composite exhibited remarkable electrochemical operation and offered a stable current density of 10 mA/cm<sup>2</sup> at a lower overpotential (280 mV) in an alkaline solution. Furthermore, an innovative Fe<sub>3</sub>C NPs@N,P-CNT-800 hybrid surpassed the standard RuO<sub>2</sub> electrocatalyst in terms of OER performance and showed negligible degradation in chronoamperometric (21 h) and chronopotentiometry (3000 cycles) analyses. The remarkable performance and stability are ascribed to the Fe<sub>3</sub>C NPs, novel tubular bamboo-like morphology of its carbon materials, and heteroatom doping, which contribute to the electrochemical interfaces, large surface area, active catalytic sites, and rapid charge transfer kinetics.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"6 ","pages":"Pages 301-309"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299123000046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing electrocatalytic activity and recognizing the most reactive sites for oxygen evolution reaction (OER) electrocatalysts are valuable to the order of renewable power. In this research article, we explored an innovative in-situ annealing technique for constructing iron carbide nanoparticles (Fe3C NPs) encapsulated via nitrogen and phosphorous doped bamboo-shape carbon nanotubes (NP-CNTs) for OER. Interestingly, the constructed Fe3C NPs@NP-CNT-800 composite exhibited remarkable electrochemical operation and offered a stable current density of 10 mA/cm2 at a lower overpotential (280 mV) in an alkaline solution. Furthermore, an innovative Fe3C NPs@N,P-CNT-800 hybrid surpassed the standard RuO2 electrocatalyst in terms of OER performance and showed negligible degradation in chronoamperometric (21 h) and chronopotentiometry (3000 cycles) analyses. The remarkable performance and stability are ascribed to the Fe3C NPs, novel tubular bamboo-like morphology of its carbon materials, and heteroatom doping, which contribute to the electrochemical interfaces, large surface area, active catalytic sites, and rapid charge transfer kinetics.

Abstract Image

用氮磷共掺杂竹状碳纳米管包封出氧反应制备出克级原位生成的碳化铁纳米颗粒
优化电催化活性,识别出析氧反应(OER)电催化剂的活性位点,对可再生能源行业具有重要意义。在这篇研究文章中,我们探索了一种创新的原位退火技术,用于构建由氮和磷掺杂的竹形碳纳米管(NP-CNTs)封装的碳化铁纳米颗粒(Fe3C NPs)。有趣的是,构建的Fe3C NPs@NP-CNT-800复合材料表现出卓越的电化学性能,并在碱性溶液中以较低的过电位(280 mV)提供了10 mA/cm2的稳定电流密度。此外,创新的Fe3C NPs@N,P-CNT-800混合物在OER性能方面超过了标准的RuO2电催化剂,并且在计时安培(21小时)和计时电势(3000循环)分析中表现出可忽略不计的退化。Fe3C纳米粒子具有优异的性能和稳定性,其碳材料具有新颖的管状竹状形态,杂原子掺杂有助于电化学界面、大表面积、活性催化位点和快速的电荷转移动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信