The role of heterotopy and heterochrony during morphological diversification of otocephalan epibranchial organs

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Karly E. Cohen, Acacia L. Ackles, L. Patricia Hernandez
{"title":"The role of heterotopy and heterochrony during morphological diversification of otocephalan epibranchial organs","authors":"Karly E. Cohen,&nbsp;Acacia L. Ackles,&nbsp;L. Patricia Hernandez","doi":"10.1111/ede.12401","DOIUrl":null,"url":null,"abstract":"<p>Epibranchial organs (EBOs), found in at least five of the eight otomorphan families, are used to aggregate small prey inside the buccopharyngeal cavity and range in morphological complexity from a singular, small slit on the pharyngeal roof to several, elongated soft tissue tubes. Despite broad phylogenetic representation, little is known about the origin, development, or evolution of EBOs. We hypothesize that both heterochronic and heterotopic changes throughout the evolution of EBOs are at the root of their morphological diversity. Heterochrony is a foundational explanation in developmental studies, however, heterotopy, a developmental change in spatial or topographical relationships, can have even more profound effects on a given structure but has received relatively little attention. Here, we investigate how developmental mechanisms may drive morphological diversity of EBOs within otomorphan fishes. We compare early pharyngeal development in three species, <i>Anchoa mitchilli</i> (Engraulidae) which has the most basic EBO, <i>B. tyrannus</i> (Clupeidae) which has a more complex EBO, and <i>Hypophthalmichthys molitrix</i> (Cyprinidae) which has the most complex EBO yet described. Using branchial arch growth rates and morphological analyses, we illustrate how both heterochronic and heterotopic mechanisms are responsible for some of the phenotypic diversity seen in otomorphan EBOs. Importantly, we also identify conserved developmental patterns that further our understanding of how EBOs may have first originated and evolved across actinopterygian fishes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

Epibranchial organs (EBOs), found in at least five of the eight otomorphan families, are used to aggregate small prey inside the buccopharyngeal cavity and range in morphological complexity from a singular, small slit on the pharyngeal roof to several, elongated soft tissue tubes. Despite broad phylogenetic representation, little is known about the origin, development, or evolution of EBOs. We hypothesize that both heterochronic and heterotopic changes throughout the evolution of EBOs are at the root of their morphological diversity. Heterochrony is a foundational explanation in developmental studies, however, heterotopy, a developmental change in spatial or topographical relationships, can have even more profound effects on a given structure but has received relatively little attention. Here, we investigate how developmental mechanisms may drive morphological diversity of EBOs within otomorphan fishes. We compare early pharyngeal development in three species, Anchoa mitchilli (Engraulidae) which has the most basic EBO, B. tyrannus (Clupeidae) which has a more complex EBO, and Hypophthalmichthys molitrix (Cyprinidae) which has the most complex EBO yet described. Using branchial arch growth rates and morphological analyses, we illustrate how both heterochronic and heterotopic mechanisms are responsible for some of the phenotypic diversity seen in otomorphan EBOs. Importantly, we also identify conserved developmental patterns that further our understanding of how EBOs may have first originated and evolved across actinopterygian fishes.

Abstract Image

异位和异时性在耳头鳃外器官形态多样化中的作用
鳃外器官(EBOs),在8个咽形动物科中至少有5个被发现,用于聚集咽腔内的小型猎物,其形态复杂,从咽顶的单个小缝到几个细长的软组织管。尽管具有广泛的系统发育代表性,但对EBOs的起源、发展或进化知之甚少。我们假设,在整个进化过程中的异时性和异位性变化是其形态多样性的根源。异时性是发育研究的一个基本解释,然而异位性是空间或地形关系的发育变化,对给定结构可能产生更深远的影响,但受到的关注相对较少。在这里,我们研究了发育机制如何驱动otomorphan鱼类EBOs的形态多样性。我们比较了三个物种的早期咽部发育:具有最基本EBO的鳀鱼(Engraulidae),具有更复杂EBO的B. tyrannus (Clupeidae)和具有最复杂EBO的Hypophthalmichthys molitrix (Cyprinidae)。通过对鳃弓生长速率和形态学分析,我们说明了异时性和异位性机制是如何导致otomorphan ebo中一些表型多样性的。重要的是,我们还确定了保守的发育模式,这进一步加深了我们对ebo如何在放光翼鱼类中最初起源和进化的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信