Emancipating data science for Black and Indigenous students via liberatory datasets and curricula

IASSIST quarterly Pub Date : 2022-12-28 DOI:10.29173/iq1007
T. Monroe-White
{"title":"Emancipating data science for Black and Indigenous students via liberatory datasets and curricula","authors":"T. Monroe-White","doi":"10.29173/iq1007","DOIUrl":null,"url":null,"abstract":"Despite findings highlighting the severe underrepresentation of women and minoritized groups in data science, most scholarly research has focused on new methodologies, tools, and algorithms as opposed to who data scientists are or how they learn their craft. This paper proposes that increased representation in data science can be achieved via advancing the curation of datasets and pedagogies that empower Black, Indigenous, and other minoritized people of color to enter the field. This work contributes to our understanding of the obstacles facing minoritized students in the classroom and solutions to mitigate their marginalization.","PeriodicalId":84870,"journal":{"name":"IASSIST quarterly","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IASSIST quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29173/iq1007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Despite findings highlighting the severe underrepresentation of women and minoritized groups in data science, most scholarly research has focused on new methodologies, tools, and algorithms as opposed to who data scientists are or how they learn their craft. This paper proposes that increased representation in data science can be achieved via advancing the curation of datasets and pedagogies that empower Black, Indigenous, and other minoritized people of color to enter the field. This work contributes to our understanding of the obstacles facing minoritized students in the classroom and solutions to mitigate their marginalization.
通过解放性数据集和课程为黑人和土著学生解放数据科学
尽管研究结果突出了女性和少数群体在数据科学中的代表性严重不足,但大多数学术研究都集中在新的方法、工具和算法上,而不是数据科学家是谁或他们如何学习自己的技术。本文提出,通过推进数据集和教学法的管理,可以提高数据科学的代表性,使黑人、原住民和其他少数族裔有色人种能够进入该领域。这项工作有助于我们理解少数族裔学生在课堂上面临的障碍,以及缓解他们边缘化的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信