Ritwick Ghosh, Adrien Baut, Giorgio Belleri, Michael Kappl, Hans-Jürgen Butt, Thomas M. Schutzius
{"title":"Photocatalytically reactive surfaces for simultaneous water harvesting and treatment","authors":"Ritwick Ghosh, Adrien Baut, Giorgio Belleri, Michael Kappl, Hans-Jürgen Butt, Thomas M. Schutzius","doi":"10.1038/s41893-023-01159-9","DOIUrl":null,"url":null,"abstract":"Atmospheric water harvesting provides decentralized and sustainable supplies of fresh water in areas away from natural water resources. However, an important challenge is that water sources such as fog are subject to contamination from airborne pollutants, especially near population centres. Here we demonstrate a rationally designed system that can capture fog at high efficiency while simultaneously degrading organic pollutants. At the heart of our design is a wire mesh coated with anatase titanium dioxide nanoparticles embedded in a polymer matrix. Once activated by sunlight, the photoactive titanium dioxide layer decomposes organic molecules such as diesel, even in the absence of sunlight; moreover, the wettability of the mesh surface is engineered to enhance water extraction. In outdoor tests, the device can maintain a good fog harvesting performance as well as a water treatment efficiency of >85%. The continuous production of water with passive purification demonstrated in our study provides an energy-free solution to address water scarcity. Atmospheric water harvesting is challenging due to the presence of airborne pollutants. The authors show a device design that enables fog capture with simultaneous pollutant decomposition powered by sunlight.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"6 12","pages":"1663-1672"},"PeriodicalIF":25.7000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41893-023-01159-9.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-023-01159-9","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Atmospheric water harvesting provides decentralized and sustainable supplies of fresh water in areas away from natural water resources. However, an important challenge is that water sources such as fog are subject to contamination from airborne pollutants, especially near population centres. Here we demonstrate a rationally designed system that can capture fog at high efficiency while simultaneously degrading organic pollutants. At the heart of our design is a wire mesh coated with anatase titanium dioxide nanoparticles embedded in a polymer matrix. Once activated by sunlight, the photoactive titanium dioxide layer decomposes organic molecules such as diesel, even in the absence of sunlight; moreover, the wettability of the mesh surface is engineered to enhance water extraction. In outdoor tests, the device can maintain a good fog harvesting performance as well as a water treatment efficiency of >85%. The continuous production of water with passive purification demonstrated in our study provides an energy-free solution to address water scarcity. Atmospheric water harvesting is challenging due to the presence of airborne pollutants. The authors show a device design that enables fog capture with simultaneous pollutant decomposition powered by sunlight.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.