Analysis of Molecular Structure Changes in Humic Acids from Manure-Amended Soils over 17 Years Using Elemental Analysis and Solid-State 13C Nuclear Magnetic Resonance Spectroscopy

IF 2.9 Q2 SOIL SCIENCE
I. Mohammed, Busayo Kodaolu, Tiequan Zhang, Yutao Wang, Y. Audette, James G. Longstaffe
{"title":"Analysis of Molecular Structure Changes in Humic Acids from Manure-Amended Soils over 17 Years Using Elemental Analysis and Solid-State 13C Nuclear Magnetic Resonance Spectroscopy","authors":"I. Mohammed, Busayo Kodaolu, Tiequan Zhang, Yutao Wang, Y. Audette, James G. Longstaffe","doi":"10.3390/soilsystems7030076","DOIUrl":null,"url":null,"abstract":"Soil organic matter (SOM) plays an important role in regulating plant nutrient availability. Here, the effects of the long-term application of different forms of processed swine manure on the SOM structure are explored through the analysis of humic acid (HA) using elemental analysis and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. The HAs from soils amended with liquid swine manure (LSM) and swine manure compost (SMC) are found to be more humified compared to the soils treated with solid swine manure (SSM) and the control (CK). The H/C and O/C molar ratios suggest that carboxyl-rich aliphatic structures are the most important class of biomolecules contributing to the LSM- and SMC-HA structures, while lignin-like structures are the most important biomolecules contributing to the CK- and SSM-HAs. SSM promoted the formation of aliphatic polar structures, which are more susceptible to aerobic biodegradation, whereas the CK facilitated the inclusion of condensed aromatic structures into the HA. Apart from the LSM-HA, the proportion of carboxylic acid functional groups reduced with manure application, while the proportion of phenolic acid functional groups increased. LSM-HA has the highest potential to enhance plant nutrient availability.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/soilsystems7030076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil organic matter (SOM) plays an important role in regulating plant nutrient availability. Here, the effects of the long-term application of different forms of processed swine manure on the SOM structure are explored through the analysis of humic acid (HA) using elemental analysis and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. The HAs from soils amended with liquid swine manure (LSM) and swine manure compost (SMC) are found to be more humified compared to the soils treated with solid swine manure (SSM) and the control (CK). The H/C and O/C molar ratios suggest that carboxyl-rich aliphatic structures are the most important class of biomolecules contributing to the LSM- and SMC-HA structures, while lignin-like structures are the most important biomolecules contributing to the CK- and SSM-HAs. SSM promoted the formation of aliphatic polar structures, which are more susceptible to aerobic biodegradation, whereas the CK facilitated the inclusion of condensed aromatic structures into the HA. Apart from the LSM-HA, the proportion of carboxylic acid functional groups reduced with manure application, while the proportion of phenolic acid functional groups increased. LSM-HA has the highest potential to enhance plant nutrient availability.
元素分析和固态13C核磁共振波谱分析粪肥改良土壤腐殖酸17年来的分子结构变化
土壤有机质在调节植物养分有效性中起着重要作用。本研究通过元素分析和13C固体核磁共振(NMR)分析腐植酸(HA),探讨了长期施用不同形式的处理猪粪对SOM结构的影响。与固体猪粪(SSM)和对照(CK)处理的土壤相比,液体猪粪(LSM)和猪粪堆肥(SMC)处理的土壤腐殖化程度更高。H/C和O/C摩尔比表明,富含羧基的脂肪族结构是促成LSM-和SMC-HA结构的最重要生物分子,而木质素类结构是促成CK-和ssm - ha结构的最重要生物分子。SSM促进了脂族极性结构的形成,脂族极性结构更容易被有氧生物降解,而CK则促进了凝聚芳族结构融入HA。除LSM-HA外,施用有机肥后羧酸官能团的比例降低,酚酸官能团的比例增加。LSM-HA在提高植物养分有效性方面潜力最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Systems
Soil Systems Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
5.30
自引率
5.70%
发文量
80
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信