Efficient Set Membership Proofs using MPC-in-the-Head

Aarushi Goel, M. Green, Mathias Hall-Andersen, Gabriel Kaptchuk
{"title":"Efficient Set Membership Proofs using MPC-in-the-Head","authors":"Aarushi Goel, M. Green, Mathias Hall-Andersen, Gabriel Kaptchuk","doi":"10.2478/popets-2022-0047","DOIUrl":null,"url":null,"abstract":"Abstract Set membership proofs are an invaluable part of privacy preserving systems. These proofs allow a prover to demonstrate knowledge of a witness w corresponding to a secret element x of a public set, such that they jointly satisfy a given NP relation, i.e. ℛ(w, x) = 1 and x is a member of a public set {x1, . . . , x𝓁}. This allows the identity of the prover to remain hidden, eg. ring signatures and confidential transactions in cryptocurrencies. In this work, we develop a new technique for efficiently adding logarithmic-sized set membership proofs to any MPC-in-the-head based zero-knowledge protocol (Ishai et al. [STOC’07]). We integrate our technique into an open source implementation of the state-of-the-art, post quantum secure zero-knowledge protocol of Katz et al. [CCS’18].We find that using our techniques to construct ring signatures results in signatures (based only on symmetric key primitives) that are between 5 and 10 times smaller than state-of-the-art techniques based on the same assumptions. We also show that our techniques can be used to efficiently construct post-quantum secure RingCT from only symmetric key primitives.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2022 1","pages":"304 - 324"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2022-0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Set membership proofs are an invaluable part of privacy preserving systems. These proofs allow a prover to demonstrate knowledge of a witness w corresponding to a secret element x of a public set, such that they jointly satisfy a given NP relation, i.e. ℛ(w, x) = 1 and x is a member of a public set {x1, . . . , x𝓁}. This allows the identity of the prover to remain hidden, eg. ring signatures and confidential transactions in cryptocurrencies. In this work, we develop a new technique for efficiently adding logarithmic-sized set membership proofs to any MPC-in-the-head based zero-knowledge protocol (Ishai et al. [STOC’07]). We integrate our technique into an open source implementation of the state-of-the-art, post quantum secure zero-knowledge protocol of Katz et al. [CCS’18].We find that using our techniques to construct ring signatures results in signatures (based only on symmetric key primitives) that are between 5 and 10 times smaller than state-of-the-art techniques based on the same assumptions. We also show that our techniques can be used to efficiently construct post-quantum secure RingCT from only symmetric key primitives.
在头部使用MPC的有效集成员证明
集隶属度证明是隐私保护系统的重要组成部分。这些证明允许证明者证明一个证人w对应于一个公共集合的秘密元素x的知识,使得它们共同满足给定的NP关系,即:∑(w, x) = 1,并且x是一个公共集合{x1,…x𝓁}。这允许证明者的身份保持隐藏,例如。加密货币中的环签名和机密交易。在这项工作中,我们开发了一种新技术,可以有效地将对数大小的集合成员证明添加到任何基于MPC-in-the-head的零知识协议中(Ishai等人[STOC ' 07])。我们将我们的技术集成到Katz等人的最先进的后量子安全零知识协议的开源实现中[CCS ' 18]。我们发现,使用我们的技术构造环签名(仅基于对称密钥原语)产生的签名比基于相同假设的最先进技术小5到10倍。我们还证明了我们的技术可以用于仅从对称密钥基元有效地构建后量子安全RingCT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信