Aarushi Goel, M. Green, Mathias Hall-Andersen, Gabriel Kaptchuk
{"title":"Efficient Set Membership Proofs using MPC-in-the-Head","authors":"Aarushi Goel, M. Green, Mathias Hall-Andersen, Gabriel Kaptchuk","doi":"10.2478/popets-2022-0047","DOIUrl":null,"url":null,"abstract":"Abstract Set membership proofs are an invaluable part of privacy preserving systems. These proofs allow a prover to demonstrate knowledge of a witness w corresponding to a secret element x of a public set, such that they jointly satisfy a given NP relation, i.e. ℛ(w, x) = 1 and x is a member of a public set {x1, . . . , x𝓁}. This allows the identity of the prover to remain hidden, eg. ring signatures and confidential transactions in cryptocurrencies. In this work, we develop a new technique for efficiently adding logarithmic-sized set membership proofs to any MPC-in-the-head based zero-knowledge protocol (Ishai et al. [STOC’07]). We integrate our technique into an open source implementation of the state-of-the-art, post quantum secure zero-knowledge protocol of Katz et al. [CCS’18].We find that using our techniques to construct ring signatures results in signatures (based only on symmetric key primitives) that are between 5 and 10 times smaller than state-of-the-art techniques based on the same assumptions. We also show that our techniques can be used to efficiently construct post-quantum secure RingCT from only symmetric key primitives.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2022 1","pages":"304 - 324"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2022-0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Set membership proofs are an invaluable part of privacy preserving systems. These proofs allow a prover to demonstrate knowledge of a witness w corresponding to a secret element x of a public set, such that they jointly satisfy a given NP relation, i.e. ℛ(w, x) = 1 and x is a member of a public set {x1, . . . , x𝓁}. This allows the identity of the prover to remain hidden, eg. ring signatures and confidential transactions in cryptocurrencies. In this work, we develop a new technique for efficiently adding logarithmic-sized set membership proofs to any MPC-in-the-head based zero-knowledge protocol (Ishai et al. [STOC’07]). We integrate our technique into an open source implementation of the state-of-the-art, post quantum secure zero-knowledge protocol of Katz et al. [CCS’18].We find that using our techniques to construct ring signatures results in signatures (based only on symmetric key primitives) that are between 5 and 10 times smaller than state-of-the-art techniques based on the same assumptions. We also show that our techniques can be used to efficiently construct post-quantum secure RingCT from only symmetric key primitives.