Catalytic conversion of polysulfides by atomic layer deposition derived titanium nitride for high-performance lithium-sulfur batteries

IF 2.9 Q2 ELECTROCHEMISTRY
Ameer Nizami, Zhao Yang, Sixu Deng, Ruying Li, Xia Li, Xueliang Sun
{"title":"Catalytic conversion of polysulfides by atomic layer deposition derived titanium nitride for high-performance lithium-sulfur batteries","authors":"Ameer Nizami,&nbsp;Zhao Yang,&nbsp;Sixu Deng,&nbsp;Ruying Li,&nbsp;Xia Li,&nbsp;Xueliang Sun","doi":"10.1002/elsa.202200013","DOIUrl":null,"url":null,"abstract":"<p>Lithium-Sulfur (Li-S) batteries as the next-generation battery system have an ultrahigh theoretical energy density. However, the limited conversion of polysulfides in sulfur cathodes deteriorates the performance of Li-S batteries. In this study, we develop a novel titanium nitride (TiN) catalyst for sulfur cathodes via atomic layer deposition (ALD). The synthesized ALD-TiN catalyst shows controllable ultrafine particle size (&lt;2 nm) and uniform distribution at the nanoscale in the carbon matrix. Combined with electrochemical analysis and multiple post-characterization techniques, ALD-TiN demonstrates an excellent catalytic effect to facilitate the nucleation and deposition of Li<sub>2</sub>S, which effectively suppresses the dissolution and shuttle of polysulfides. The as-prepared sulfur cathodes, with the assistance of TiN catalyst, exhibit excellent cycling performance at a high rate (4 C) and deliver 200% higher discharge capacity than the pristine Sulfur-pristine porous carbon composite cathodes.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202200013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202200013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-Sulfur (Li-S) batteries as the next-generation battery system have an ultrahigh theoretical energy density. However, the limited conversion of polysulfides in sulfur cathodes deteriorates the performance of Li-S batteries. In this study, we develop a novel titanium nitride (TiN) catalyst for sulfur cathodes via atomic layer deposition (ALD). The synthesized ALD-TiN catalyst shows controllable ultrafine particle size (<2 nm) and uniform distribution at the nanoscale in the carbon matrix. Combined with electrochemical analysis and multiple post-characterization techniques, ALD-TiN demonstrates an excellent catalytic effect to facilitate the nucleation and deposition of Li2S, which effectively suppresses the dissolution and shuttle of polysulfides. The as-prepared sulfur cathodes, with the assistance of TiN catalyst, exhibit excellent cycling performance at a high rate (4 C) and deliver 200% higher discharge capacity than the pristine Sulfur-pristine porous carbon composite cathodes.

Abstract Image

高性能锂硫电池用原子层沉积衍生的氮化钛催化转化多硫化物
锂硫(Li-S)电池作为下一代电池系统,具有超高的理论能量密度。然而,硫阴极中的多硫化物转化率有限,导致锂硫电池性能下降。在本研究中,我们通过原子层沉积(ALD)技术为硫阴极开发了一种新型氮化钛(TiN)催化剂。合成的 ALD-TiN 催化剂具有可控的超细粒度(2 纳米),并在碳基体中呈纳米级均匀分布。结合电化学分析和多种后表征技术,ALD-TiN 在促进 Li2S 的成核和沉积方面表现出卓越的催化效果,可有效抑制多硫化物的溶解和穿梭。在 TiN 催化剂的帮助下,制备的硫阴极在高速率(4 C)下表现出卓越的循环性能,其放电容量比原始硫-原始多孔碳复合阴极高出 200%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信